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€ Next Wave

Letter from the Guest Editor

For years the National Security Agency (NSA) has pursued research in high confidence
software and systems (HCSS) technologies to improve the assurance of security critical
algorithms, protocols, software, and hardware. Along the way, NSA has been a leader in the
development of a national, collaborative community of HCSS researchers and sponsors, some of
whom are represented in this issue of The Next Wave (TNW).

HCSS research has primarily focused upon developing foundational technology and
techniques, yielding components and systems that are “correct by construction.” HCSS research
has also been aimed at creating analytic techniques to assess and improve the quality of existing
code and specifications. Over the years, HCSS research projects have delivered significant
advances within both developmental and analytic areas, and yet substantial questions remain
unanswered:

* How can software and systems be made secure in a more cost-effective manner, and how
can one obtain high assurance that security has been achieved?

* How can one gain confidence in software and systems that are developed at arm’s length,
or worse, are of unknown provenance?

This issue of TNW provides a glimpse into the multi-faceted research strategy gaining
traction within and beyond the HCSS community—a strategy that attempts to tackle tough
questions such as those identified above. Each facet of the strategy, whether preventive or
analytic, will require better evidence—evidence capable of supporting an objective assessment
that the system in question meets specified requirements. In short, the need for evidence-based
assurance is the core tenet of each approach discussed here. Additionally, each article in this issue
highlights the strong overlap between preventive and analytic methods, with an emphasis on the
early application of analytic methods in the development process. When used at the earliest stages
in the process, analytic methods guide development choices, thereby lessening engineering risks.

In closing, it would be irresponsible to publish this issue of TNW without explicitly
acknowledging the one person I consider to be the heart of the HCSS community within the United
States—Dr. Helen Gill from the National Science Foundation. Dr. Gill has worked tirelessly
within this community, giving of her time, her talent, and her wisdom. Dr. Gill exemplifies the
very best of those who have been charged with advancing science in the public’s interest.

C:f—-'-d-rl!"’-re"':"*-., Mb

William B. Martin,
Chief, High Confidence Software and Systems Division

The Next Wave is published to disseminate technical advancements and research activities in telecomm-
unications and information technologies. Mentions of company names or commercial products do not
imply endorsement by the US Government.
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etter from Sir Tony Hoare

I heartily welcome this special issue of
The Next Wave. It gives a realistic picture of the
advancing state of the art in the specification,
design, implementation, and certification of high
confidence computer systems.

This topic has interested me since the 1960s,
when 1 first encountered an article by Bob Floyd
on Assigning Meanings to Programs. At that time,
I judged this was a topic highly suited to pure
academic research, a career on which I was just
embarking. Like other scientific investigators, we
hoped to enlarge scientific understanding of what
computer programs do, and how and why they
work. We hoped to test the range of applicability
of scientific theory by experimental verification of
real programs. We were driven by ideals of total
program correctness, and total certainty achieved
by mathematical proof.

As in other mature branches of science (e.g.,
physics, chemistry, and most recently biology),
the fundamental research has now reached a point
where it can be applied in engineering practice. As
in other branches of engineering, the key to this
technology transfer has been the availability of
powerful programme analysis and theorem-roving
tools. They are based soundly on scientific theory,
but conceal this fact to an appropriate degree from
their users. The tools are now subject to continuous
improvement in the light of realistic academic
and industrial experiments, and by exploiting
the increasing performance of algorithms for
logical and mathematical reasoning by computer.

4 A Letter from Sir Tony Hoare

Theoretical research now can use the experimental
method as a means of differentiating, selecting,
and improving the relevant theories for solution of
existing and future problems.

The articles in this issue concentrate on
advances in tools and experiments. They explicitly
outline the remaining deficiencies and difficulties,
but I hope that they give sufficient evidence to
encourage a wider range of pioneering applications,
leading at a sensible rate towards general adoption
of computer-assisted programming methods, both
by software engineers and by their customers. @

—‘:: 'Hom-co——-
|

About the author

In 1980, Sir Tony Hoare received the ACM
Turing Award for his “fundamental contributions
to the definition and design of programming
languages,” and in 2000 he was awarded the
Kyoto Prize for his “pioneering and fundamental
contributions to software science.” These two
awards represent the top international accolades
available to a computer scientist. Also in 2000 he
was knighted by Her Majesty the Queen for services
to education and computer science. Sir Tony is now
Emeritus Professor at Oxford University, and works
as a Senior Researcher at Microsoft Research in
Cambridge.



domain-specific language (DSL) is a programming language targeted

at producing solutions in a given problem domain by enabling subject-

matter experts to design solutions in terms they are familiar with
and at a level of abstraction that makes most sense to them. In addition, a
good DSL opens the way for powerful tool support: simulations for design
exploration; automatic testing and generation of test harnesses; generation
of highly specialized code for multiple targets; and generation of formal
evidence for correctness, safety, and security properties.

You are a highly skilled crypto-
grapher charged with designing a custom,
state-of-the-art encryption solution for
protecting mission-critical information.
There
requirements for the implementation—

are explicit and competing

throughput, size, power utilization,
operation temperature, etc.—that may

affect the implementation.

You produce a design and want
to see how it matches up with the
How

implementation  requirements.

would you proceed?

Typically, you find an expert
hardware designer who translates your
into VHDL (a hardware

description language), and then runs

algorithm

proprietary tools to characterize the

implementation. If it uses too much power,

or has insufficient throughput, or..., the
hardware designer iteratively tweaks the
design until it is “good enough.”

But how do you know if it still
works the way you intended?

Typically, the design is fabricated
(if it is an ASIC—application-specific
integrated circuit) or loaded into an FPGA
(field-programmable gate array), placed

B oy

Creating a crypto algorithm requires
skills in math AND programming

into a test harness, and blasted with test
vectors. If it works, great. Otherwise, the
search begins to find the error.

And what if a security hole; for
example, a malicious counter or a back
door; was introduced? Would you even

know?

There must be a better way.

n Figure 1: Traditionally, the

¢‘ . crypto developer must be highly

\://“ trained and expert at balancing

) Validation Is a my-riad of often conflicting
Variety of complex and tedlious requirements.
target architectures
Variety of Image Source: Galois, Inc.
requirementis
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The Cryptol specification language
was designed for the National Security
Agency (NSA) as a public standard for
specifying cryptographic algorithms [1].
The Cryptol tools provide a development
path for cryptographic modules across the
entire software process, from specification
and implementation to verification and
certification. Cryptol tools significantly
reduce overall life-cycle costs by
addressing the key cost drivers in the

deployment of cryptography.

Cryptol specifications are
fully

to experiment

executable, allowing designers
with their
incrementally as their designs evolve.

programs

The Cryptol tools support a refinement
methodology that bridges the conceptual
gap between specification and low-level
implementation, thereby reducing time
to market. For example, Cryptol allows
engineers and mathematicians to program
cryptographic algorithms on FPGAs as if
they were writing software.

The
platform-neutral specification language
that generates implementations on multi-
ple platforms. Cryptol tools can generate

Cryptol tools provide a

software  implementations, hardware
implementations, and formal models for
verification, all from a single Cryptol

program.

A Cryptol reference specification
becomes the formal documentation for
the cryptographic module, eliminating
the need for separate and voluminous
English descriptions. In addition, Cryptol
verification tools show  functional
equivalence between the specification
and the implementation at various stages

of the toolchain.

From Section 3.1 of the AES definition [2]:

The input and output for the AES algorithm each consist of sequences
of 128 bhits... The Cipher Key for the AES algorithm is a sequence of
128, 192 or 256 bits. Other input, output and Cipher Key lengths are
not permitted by this standard.

In Cryptol:
{k}k>= 2, 4 >= k)
=> ([128],[64 *k]) -> [128]

Image Source: Galois, Inc.

Figure 2: The constraints and requirements from the Advanced Encryption Standard
(AES) [2] can be translated directly into Cryptol types, as shown above. The colored
text shows the linkage between English constraint and Cryptol type.

plaintext

initial
des : ([64],[56]) -> [64]; permutation
des (pt, key) = permute (FP, last)
where {
pt’ = permute (IP, pt);
iv =[] round (Ir, key, rnd)
|l rnd <-[0.. 15]

Ky

Illr < [(split pt)] # iv [ L=r, | [ReLARK) ]
I K
last = join (swap (iv @ 15)); :
swap [ab] =[b a];
}; | L=R; | | R,= L AR, Ky |
LN N J

round : ([2][32], [56], [4]) -> [2][32];
round([l r], key, rd) = [r (I*f(r, kx))]
where {
kx = expand(key, rnd);
f(r,k) = permute(PP, SBox(k*permute(EP, r)));
b5 |R76= Lis™ ARy, Kse) | | Lig=Rys |

| Lis= Ry | |R15= L AR, Ky |
Ky

inverse initial
permutation

Image Source: Galois, Inc.

ciphertext

Figure 3: The Data Encryption Standard (DES) algorithm is a block cipher that
uses a 56-bit symmetric key. The diagram above is taken from the Standard [3].
Cryptol uses parallel stream comprehensions to interleave data and lazy evaluation
to encapsulate multiple computational stages in a single statement. Colors and
shapes are used to help relate the program text to the diagram. Details of the

language can be found in [4] and at www.cryptol.net.

Cryptol [1] is a pure functional
language built on top of a polymorphic
type system that has been extended with
size polymorphism and arithmetic type
predicates designed to capture constraints
that arise naturally in cryptographic
specifications.

Figure 2 shows an excerpt from
the AES specification [2] that describes
the generator inputs and outputs, and the
corresponding Cryptol definition. The
text to the left of =>([128],/64%k]) in the
Cryptol definition describes quantified
type variables and predicates on them. In
this case, the type is size polymorphic,
relying on the size variable k. The

6 Empowering the Experts: High-Assurance, High-Performance, High-Level Design with Cryptol

predicates constrain the range of values
the quantified size variables can accept;
here, k must be between 2 and 4. To the
right of the =>, we see the actual type.
The function has two inputs: a 128-
bit word containing the plaintext and a
64*k-bit wide key. The function outputs
another 128-bit word, the ciphertext. Note
the precise correspondence of the type to
the English description in the standard.

Figure 3 shows a Cryptol code
snippet—a specification for the core of
the DES algorithm. Note the compact
mathematical function notation and the
definition of sequence structures and bit
sizes. The Cryptol Reference Manual [4]
has many more examples as well as a
detailed description of the language.



operationsare to be applied. But there
the resemblancends. Sequencegihich

Type 1 cryptographic deces appear repeatedlyin the mathematical Gooddesignis alwaysattheroot of
protect  information  of  national descriptions of crypto  algorithms, great performance. One of theyKactors
importance.The information assuranceh@e mary different instantiations asin Cryptol's performanceresults is its
standards for such products ardardware.At one atreme,the sequence ability to explore the implementation
correspondingly high. In addition, cryptocan be spread out in space as side-bglesign space at aewy high leel. A
modernization requirements mandate fielgide parallelismAt the other gtreme, Cryptol deeloper can xperiment with
programmability and \arious operational the sequence can be laid out in time asary different microarchitectures in the
requirements call for a reduced spac€onsecutie values held in a gister or course of a f@ days, cwering ground
weight, and pwer footprint. over mary registers in a pipeline. Man that would otherwise ta& weeks or

FPGAs ofer a compelling platform combinations of these are also possible.months using traditional method#
to addressthese needsThey are field The Cryptol FPGA generator uses &ariety of implementation approaches can
updatable by design, fef tremendous wide variety of engineering heuristics tobe modeled and characterized quickly
performance potential, and Jea fever pickanappropriatéranslatiorofaCryptol For example, at the Cryptol \el,
nonrecurring engineering costs tharfunction to an FPGA configuration thata straightfonard idiom identifies pipe-
traditional ASICdesigns. will make efective and efficient use of lined functional units in hardave. Recall

However, FPGA deelopment the silicon. The user can also provide thespecificatiorfor DESshowvnin Figure
still requires the considerable time angiragmas (compiler commands) abous. The designer has created a pipelined
talents of skilled hardare designers, space/time mappings, thereby guiding theersion of the round function by hand
which increases delopment time translation process without compromisindy factoring the high-kel Cryptol
and costs. Mainstream design toolshe intayrity of the original specification. specification, as shen in Figure 4.The
supplied by FPGA endors hee more The declaratie quality of Cryptol, Cryptol FPGA generatorproduces an
in common with VLSI (very-lage- \yhich malkes Cryptol a good specificationefficient pipelined circuit, also sha in
scale intgration) design tools than Withlanguage, also plays aek role in the Figure 4 on page 8.
modern  programming  @ffonments. effectiveness of automatic generation High-level design eploration pre
These design tools automatically limit o FpGA cores.In contrastthe inherent vides a profound adwtage in the del-
the user population to designers trained igequentiality of mainstream programopment of high-performance algorithms
VLSI design. ming languages mak them a poor match(or in algorithms meeting other design

The Cryptol FPGA generator for the highly parallel nature of FPGAs. constraints).The ley is the speed with
introducesa new designflow thatallows which the deeloper is able to iterate the
engineers and mathematicians to program design, the bottleneck of harelre design.

cryptographic  algorithms on  FPGAs A cryptodevelopercanproducerapidde-
in a high-leel language incorporating The Cryptol FPGA generator ;. jterations using the Crypt@bolkit,

concepts and constructsanfiliar to Produces cores whose throughput angge ciively increasing produsiity by up
cryptologists. The vision is that instead area usage ke been comparable to., .. o der of magnitudever traditional
of demanding lo-level hardvare design (and in some cases better than) handpp gevelopment.

knowledge, users are able tepeess their coded VHDL/Verilog. For example, an

designs and programs at a much highénplementation of 128-biAES for the

level of abstraction and takadwantage Xilinx Virtex 4 FPGA has beegenerated

of powerful automated mechanismswith clock rates in &cessof 200 MHz The FPGA generatouses semantic
for generating, placing, and routing th€which translates to throughput of bettemodels to establish the correctness of
circuits. than 25 Gbps) using only 6912 slices (2the process.To gain final assurance,

In some ways, the mathematics percent of the slices on the chip) and 10Qryptol developer Galois prddes an
behind a cryptographicspecificationis Block RAMs (62 percent of thevailable automatic equialence chedalr to prae
like a hardwre description. Both g&¢ Block RAMS). Theoretical results basedthat the actual code that will run on the
unambiguous specification of Wwobits on Xilinx tools indicate that 500 MHz (65 FPGA is equialent to the reference
are to be handled and wobit-level Gbps) is achieable by these cores. implementation.

The Next Wave = Vol 19 No 1 = 2011 7



round : [infl([2][32],[56]) -> [inf]([2][32],[56]);
round data0 = data3
where {
datail = [zero] # [| (expand key " permute(EP, r), [l r], key)
| ([ r], key) <- data0
I;
data2 = [zero] # [| (SBox(kx), [l r], key)
| (kx, [ r], key) <- data1l
II;
data3 = [zero] # [| ([r (I * permute(PP, sb))], key)
| (sb, [I 1], key) <- data2
I;
b

data0 datal data2 data3
— key key key key
—> r r r Ipx >
- | | (or) rop
GG oG

Image Source: Galois, Inc.

Figure 4: The code snippet above shows a new implementation of the DES
round function, shown in Figure 3 on page 6. A flow diagram is included, with
colors showing the correspondence between code and diagram element. This
version uses sequence comprehensions that can be performed in parallel
and introduces extra variables that translate into registers and pipelined
operations in the VHDL implementation.

Refine spec Create an FPGA
for a specific implementation from the
target target specification
Reference £, Cryplo
Specification g L Developer

= R R
.\.
Madel

SPIR
Model

Place&Route
Madel

Reference
Model

Target
Mode!

Netlist
Model

Bl cretol tools
Bl FPGA vendortools
B crptol files

B Formal Models

Generated files

Image Source: Galois, Inc.

—* Input to tool

- -+ Inputto designer

Figure 5: Verification can be performed at various points during the translation,
which allows for high-assurance refinement during development. Note that
the major compiler phases (the flow through the top line) remain outside the
trusted-code base for verification. Trust in the down-arrows, representing
translators from various intermediate forms to formal models, along with the
off-the-shelf equivalence checkers themselves, is all that is needed.
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The Cryptol equivalence checker
utilizes state-of-the-art SAT (Boolean
satisfiability) and SMT (satisfiability
modulo theories) solvers as proof engines,
together with custom heuristics and
techniques. For example, the equivalence
checker can show the equivalence of an
AES specification written in Cryptol
with an unrolled, pipelined VHDL
implementation of AES generated from
Cryptol and passed through the Xilinx

toolchain all the way to place and route.

Cryptol’s verification framework
has been designed to address equivalence-

and safety-checking problems.

The equivalence-checking problem
asks whether two functions, fand g, agree
on all inputs. Typically, f is a reference
implementation  of algorithm,
textbook-style

some
following a standard
description, and g is a version optimized
for time and/or space for a particular
The

checking framework allows a developer

target  platform. equivalence-
to formally prove that f and g are
semantically equivalent, ensuring that
the often very complicated and extensive
optimizations performed during synthesis
have not introduced bugs. Note that the
final implementation g does not need to
be in Cryptol—an important use case of
the verification framework is to verify that
third-party algorithm implementations
(typically in VHDL) are functionally
equivalent to their high-level Cryptol
versions. In this case, Cryptol acts as a

hardware/software verification tool [5].
The

run-time exceptions.
function f, we would like to know if f’s

safety-checking problem is
about Given a
execution can perform operations such as
division by zero or index out of bounds.
These checks are essential for increasing
the reliability
implementations, since they eliminate the

of Cryptol-generated



need for sophisticated run-timeoeption transformations to increase speed and/check points, Cryptol pruides the user
handling mechanisms. reduce space usage. Behind the scenesth a high-assurancedevelopment

The Cryptol toolset comes with athe Cryptol toolchain translates Cryptol teervironment, ensuring that the applied
push-lutton equialence/safety checkinga custom signal-processing intermediatgansformations ~ presesv  semantic
framavork to answer these questiongepresentation (SPIR), which acts as aequialenceThe final piece of the puzzle
automatically for a laye subset of the bridge between Cryptol and FPGA-basetbr end-to-endverification is generating
Cryptol language [6]. Cryptol usesfof target platformsThe SPIR representationan AIG for the bit file generated by the
the-shelf SA/SMT sohers such as allows for easy xperimentation with Xilinx tools, as represented by the dashed
ABC [7] or Yices [8] as the underlying high-level design changes,becauseit linein Figure5.At thistime, theformatof
equialence-checkingngine,translating remains fully executable while also this file remains proprietary
Cryptol specifications to appropri providing essential timing/space usage
ate inputs for these tools automaticallystatistics without going through the
However, the use of thesexeernal tools computationally ®pensve synthesis
remains transparent to the users, whasks. Cryptol's formal. verification
only interact with Cryptol as the main Once the programmer is happith frame/vork_ clearly beneflfs from recent
verification tool. the design, Cryptol translates the code t%Q\ances n SH/SMT solving. .Htwever,

Of course, equalence checking VHDL, which is further fed to third-party Itis als_o Important to recognlze thf’ﬂ the
applies not only to handwritten programsynthesis tools. Figure 5 she the flav propertles. Of_ cryptographic algorithms
but also to generated code. Crypsol for the Xilinx toolchain, taking theHDL male apphcaﬂgnsof automatedformgl
synthesis tools performxtensie and through synthesis, place and route, armethods particularly successfullhis
often \ery complicated transformationsbit-file generation steps. In practice, is especially true for symmetricek
to turn Cryptol programs into hardve these steps might need to be repeated(CTYPtion algorithms that rely heaily
primitives  aailable on taget FPGA using feedback from the synthesis tool&" l0#-level bit manipulations instead
platforms. The formal erification until the implementation satisfies the®’ the high-leel mathematical functions
framework of Cryptol allavs equi/alence requirementg‘_rhe overall approach aims emplcyed by DUinC'b)/ cryptograph.
checking between Cryptol and netlisqt greatly reducing the number of such In particulay ~ symmetric-ley
representationsthat are generatedby repetitions by preiding early feedback cryptographic algorithms almost e
various parts of the compileas we will g the userat the SPIR leel. The final Pperform control flav based on input data,
explain shortly Therefore, ay potential outcome is a binary file that can bén order to &oid attacks based on timing.
bugs in the compiler itself are also caughgynloaded onto a Xilinx FPGA board, The series of operations performed are
by the sameerification framevork. This completing the design process. typically “fixed; without ary dependence
is acrucial aspecof the systemproving Cryptol's \erification flw is ©n the actual inputalues. Similarly the
the Cryptol compiler correctould be an jniarjeaed with the design procesas 100ps used in these algorithms almost
extremely challenging if not impossible yenictedin Figure 5, Cryptol prades aWways hae fixed bounds; typically these
task. Instead, Cryptol prales a @rifying  .,5tom translators atavious points in bounds arise from the number of rounds
compilerthatgeneratesode alongvith a e ransiation process to generate formapecified by the underlying algorithm.
formal proof that the outputisfunctionallymocmIS in terms oAIG (and inverter  Techniquesiike SAT-sweeping[10] are
equialent to the input. graph) representations [9]. In particylarespecially dective on crypto algorithm

the user can genera&¢G representations verification, since  simulation-based

Figure 5 proides a high-leel from the reference (unoptimized) Cryptonode-equialence guesses are dli to
overview of atypical Cryptoldevelopment  specification, from the tget (optimized) be quite accurate for algorithms that
and \erification flav. Starting with a Cryptol specification, from the SPIRrely heaily on shuffling input bits.
Cryptol reference specification, therepresentdon, from the post synthesisObviously, these properties do not neak
designer iteratiely refines the program circuit description, and from the finalformal erification trvial for this class of
and “runs” it at the Cryptol command(post-place-and-route) circuit descriptioncrypto algorithms; rathethey male the
line. These refinements typicallyBy successie equvalence checking of use of such techniques highly feasible in
include \arious pipelining and struatal the formal models generated at thesgractice [11].
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Proving security properties. Not
all properties of interest can be cast as
functional equialence problemsThis
is especially true for cryptographFor

The process of erification in _
instance, if we are handed an géd

Cryptol typically beins with
understanding the highvel interace of VHDL implementation of AES, in
the VHDL implementation under study addition to knaing that it implements
Through Cryptob foreign-function AES Correctly we would like to be
interface, the base intaide to th&HDL is ~ sure that it does not containyatextra
simply imported using Cryptd’“extern”  circuitry” to leak the ky. In general,
declaration capabilityThen the required we would like to shav that an end user
interface-matchingcode is written in  cannot @in ary information from an

Cryptol, mainly implementing the properimplementation that cannot be obtained
use of control signalS.his process mas from a reference specification.
the external implementationavailable at Reducing the size of the trusted

the Cryptol command prompt, enablmq:ode base. Cryptol’'s formal \erification

the user to call it on specifialues, pass it :
. system relies on the correctness of the
through preiously generated teseetors, .
. . o Cryptol compilers front-end components
essentially making thexternal definition |
(i.e., the parsethe type system, etcthe

behae just likk ary other Cryptol e
function. This facility greatly increases symbolic simulatar and the translators

productiity, since it unifies softare and © SAT/SMT solers. Note that Crypta
hardware under one common interface. nternal compiler passes, optimizations,
Once the reference specification an@nd code generators (i.e., the typical
the Cryptol/VHDL lybrid expose the compiler back-end components) are not
same intedce, the user generates formdn the trusted code basélhile Cryptol's
models for both of them, and checks fotrusted code base is only a fraction of the
equialence. entireCryptoltool suite,it is nevertheless

a large chunk of code from the open-
sourcefunctionalprogrammindanguage,
Haslell. Reducing the footprint of this
trusted code base, and/or increasing
assurance in these components of the
system, is an ongoing challenge.

Increasing the cover age of formal
methods. Cryptol's formal \erification
framavork works on a relatiely lamge
subsebf Cryptol [6]. The mainlimitation
is in verifying algorithms for all time, i.e.,
programs that receg and produce infinite
streams of data. CurrentlyCryptol
can \erify such algorithms only up to a
fixed number of clockycles, efectively
introducing a time boundWhile this
restriction is irrelevant for most block-
based crypto algorithms, it does not
generalize to stream ciphers in general.
The introduction of induction capabilities
in the equwalence chedkr or the use of
hybrid methods combining manual top-
level proofs with fully automated SA
SMT-based sub proofs might mide
a feasible alternate for handling such
problems.

10 Empowering the Experts: High-Assurance, High-Performance, High-Level Design with Cryptol



Q: What can YOU do with Cryptol?

“..an experienced Cryptol programmer given
a new crypto program specification and a soft
copy of test vectors can be expected to learn
the algorithm and have a fully functional and
verified Cryptol model in a few days to a week.”

“The AIM crypto engine software engineers
at General Dynamics C4 Systems use the
Cryptol modeling language as part of their
Software Engineering Institute CMM® Level
5 development process. Cryptol provides four
basic benefits leading to the certification of
crypto equipment. First, Cryptol allows the
design engineer to rapidly express an algorithm
in a common mathematical notation, which
is fully executable on the Cryptol interpreter,
providing verification that the algorithm is
completely understood. Second, the Cryptol
notation for the various components of the
algorithm are used to annotate the AIM micro
sequencer code which provides much greater
readability of that extremely dense assembly
language. Third, component testing of AIM
code, from small snippets through major
subroutines is greatly facilitated with Cryptol
generated test vectors derived from end-to-
end test vectors provided in algorithm source
specifications. Finally, Cryptol models are
evolving to directly support the certification
effort...”

1

Test

vectors
—

Cryptol
interpreter

Image Source: Galois, Inc.

Q: What can YOU do with Cryptol?

A: Produce and refine a family
of designs.

A team of developers from Rockwell Collins,
Inc. and Galois, Inc. has successfully produced
high-speed embedded Cryptographic Equipment
Applications [CEAs), automatically generated
from high-level specifications. An algorithm
core generated from a Cryptol specification for
AES-256 running in Electronic Codebook mode
demonstrated throughput in excess of 76
Gbps. These high-speed CEA implementations
comprise a mixture of software and VHDL,
and target a compact new embedded platform
designed by Rockwell Collins. Notably, almost no
traditional low-level interface code was required
in order to implement these high-performance
CEAs. In addition, automated formal methods
prove that algorithm implementations faithfully
implement  their high-level specifications.
Significantly, the Rockwell Collins/Galois team
was able to design, implement, simulate,
integrate, analyze, and test a complex CEA on
the new hardware in less than 3 months.

AES-256, ECB mode, [Clockrate Resources Throughput
Virtex-4 technology

Implementation (MHz) (slices) (Gbps/
characteristics second)
Optimized for

[ iy~ 187.5 2690 16.3
Optimized to minimize 135.1 849 10
resource usage

IR, 102.0 2535 09
minimal size

Test

gk~ . Vectors
~
~
.
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implementation " :
ecificaiion

Symbolic T

evaluator
IReference|

Cryptol
compiler

l ]
;

Equivalence
checker
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L
"
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Equivalence ¢ [ Netlist
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Image Source: Galois, Inc.

Netlist

Q: What can YOU do with Cryptol?
A: Gain assurance about your design.

Van der Waerden'’s theorem states that for any
positive integers r and k there exists a positive
integer N such that if the integers {1 2 ...N}
are colored, each with one of r different colors,
then there are at least k integers in arithmetic
progression all of the same color. For any r and
k, the smallest such N is the van der Waerden
number W(rk).

Van de Waerden numbers are difficult to
compute. In 2007, Dr. Michal Kouril of the
University of Cincinnati established that
W([2,6)=1132 [i.e., 1132 is the smallest
integer N such that every 2-coloring of {1 2
...N} contains a monochromatic arithmetic
progression of length 6) [19]. The most recent
previous result, W(2,5)=178, was discovered
some 30 years earlier. Kouril computed W(2,6)
using a special SAT-solver and clever technigues
to bound the search and employed FPGAs to
speed up the search.

Kouril wrote VHDL to program the FPGAs.
In order to convince himself that the FPGA
ensemble was doing what he expected, he also
expressed his algorithm in Cryptol, generated
formal models for both the Cryptol specification
and the VHDL implementation, and verified that
the two were equivalent!

Why not let Cryptol generate the solution?
So far no one has found a way to prove
unsatisfiability of W(r,k] directly without an
extensive search. The reliance on search makes
the problem hard; and although people have
found ways to generate long partitions without
a monochromatic arithmetic progression [20],
the true test that there are no longer partitions
is currently only possible using a search.

Handwritten
VHDL

implementation

Symbolic
evaluator

RETIS R

Equivalence
checker

Symbolic

evaluator

Image Source: Galois, Inc.
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Q: What can YOU do with Cryptol?

Skein [12] is a suite of cryptographic hash
algorithms targeted at the NIST SHA-3
competition [13]. At its core, Skein uses a
tweakable block cipher named Threefish. The
unique block iteration [UBI) chaining mode
defines the mode of operation by the repeated
application of the block cipher function.

Galois developed and published a Cryptol
specification for Skein [14]. We have verified two
independently developed VHDL implementations
of Skein against our specification for one 256-
bit input block, generating a 256-bit hash value.

The first verification was performed against
Men Long's implementation [15]. Long
implemented only the underlying Threefish
encryption and the XOR of input data; we
modified our reference specification to
match. The AIG generated from the Cryptol
specification had 118156 AND-gates; the
VHDL version was more than five times as
large, with 853,863 AND-gates. Equivalence
checking took about an hour to complete on
commodity hardware using ABC [7].

In this work, we encountered a problem
with Long's VHDL code that rotated a 64-bit
signal a variable distance. The code was given
different meanings by GHDL [18], simili [17],
and the Xilinx synthesis tools. We removed
the ambiguity by replacing it with the standard
library function rotate_left. Thus, the Cryptol
verification path identified an otherwise
undetected ambiguity bug.

The second verification was performed against
Stefan Tillich’s full Skein implementation [18].
The AIG sizes in this case were 301,085 AND-
gates for the reference Cryptol versus 800,238
AND-gates for the VHDL implementation: about
three times larger. Equivalence checking was
completed in about 18 hours, again using ABC.

Handwritten Cryptol
D) VHDL 3 implementation
I
)

|mplementat|0 specification

{
| VHDL Netlist
Equivalence
W ( checker

oy

Equlvalence
checker

Image Source: Galois, Inc.

Q: What can YOU do with Cryptol?

A: Teach and learn about cryptography, satisfiability theory,....

“Cryptol was quite an experience. We began with simple sequences such as [1 2 3 4] and by
applying ‘@’ and I’ to our list of numbers, we learned the priority/position of each number: when
using @, the order is zero based, [Oth 1st 2nd 3rd], and when using !, the order is reversed, [3rd
2nd 1st Oth]. Each number or element contains a certain numbers of bits: 1 (Ob1) contains one
bit, 2 (Ob10]) is two bits, 3 [Ob11) is also two bits and 4 [Ob100)] is three bits.

Once the group grasped the concept of bits, we moved on to shifting and permuting sequences
using split, join, splitBy, groupBy, take, drop, reverse, and transpose. We then applied these fun-
damentals we had learned about Cryptol to interact with its interpreter and to explore some of the
concepts we had learned earlier in the year, such as Pascal’s Triangle, the Fibonacci sequence, the
sum of a series of odds, even, etc. Once that was complete, and given that Cryptol's intended use
is cryptography, we used Cryptol to encrypt plaintext and decrypt ciphertext for a range of classes
of cryptographic algorithms, to include classic (substitution and transposition) and modern (sym-

metric and asymmetric) cryptographic systems.

We concluded our study of Cryptol by looking into
propositional logic and satisfiability, and ultimately
at a satisfiability solver that could be called from
within the Cryptol interpreter. In our examination
of propositional logic, we were initially forced
to prove our satisfying assumptions by hand
through the construction of small truth tables
with assignments of values with the goal of having
the formula evaluate to ‘true’, that is, they were
satisfied. To extend these concepts we utilized
the automated satisfiability solver that we could
call from the Cryptol interpreter. One application
where we were able to represent a problem
within Cryptol and to utilize the satisfiability solver
was in solving Sudoku puzzles. It was an amazing
experience and | will continue to play around with
Cryptol and the satisfiability solver because it was
s0 very intriguing.”
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Q: What can YOU do with Cryptol?
A: Make a MILS FPGA.

The Cryptol Development Toolkit from
Galois provides a tool flow that puts FPGA
implementation into the hands of mainline
developers, improving both productivity and
assurance, without sacrificing performance.

The Xilinx Single Chip Cryptographic [SCC)
technology enables Multiple Independent
Levels of Security [MILS] in a single chip.
These two technologies fit seamlessly into a
single development flow.

The combined solution can address
high-grade cryptographic application
requirements (redundancy, performance,
red/black data, and multiple levels of
security on a single chip) as well as high
assurance development needs [high-
level designs, automatic generation of
implementation from design, automatically-
generated equivalence evidence], and has
the potential to significantly reduce the time
of costs of developing Type-1 cryptographic
applications.
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Security systems require especially

high levels of assurance of correctness,

reliability, and security. Researchers
in the National Information Assurance
Research Laboratory (now Trusted
Research) at the National
(NSA) with the
at Rockwell

Collins conducted a project to exercise,

Systems
Security Agency
assistance of engineers

evaluate, and enhance a methodology
for developing high-assurance software
for an embedded system controller.
In this approach, researchers captured
system and

requirements  precisely

unambiguously  through  functional
specifications using the Z (pronounced
“zed”) formal specification notation.
Rockwell Collins then implemented these
requirements using an integrated, model-
based software development approach.
The development effort was supported by
a suite of tools that provides automated
code generation and support for formal
verification. The specific system is a
prototype high-speed encryption system,
although the controller could be adapted

for use in a variety of critical systems in

A

the

which very high assurance of correctness,
reliability, and security or safety is
essential. In this article, we use the High
Speed Crypto Controller (HSCC) project
to illustrate a development methodology
which we believe is useful in producing
both high quality software and the
assurance evidence to support evaluation.

In order to study advanced high-
speed electronics technology, hardware
research engineers in the NIARL started
a project to build a prototype high-
speed encryption system. The system
architecture they arrived at is shown in
Figure 1.

In this design, the data accelerators
handle data
formatting, and enforcement of some

input/output  functions,
security policy rules. The encrypt core and
decrypt core perform the actual encryption
and decryption. These six subsystem
blocks are in the high-speed data paths.
The control block manages the subsystem
blocks but lies outside the high-speed
data path. An important consequence of
this architecture is that the HSCC does
not need to be implemented using any
exotic high-speed electronics technology.

14 A High-Assurance Methodology for the Development of Security Software

igh-Assurance
Methodology for
evelopment

of Security Software

The critical HSCC design goals are
high reliability and achieving very high
assurance of functional correctness and
essential security properties. As a result,
project responsibility for implementing
the data accelerators and the crypto cores
remained with the hardware engineering
organization while responsibility for the
HSCC was passed to the High Confidence
Software and Systems (HCSS) Division.

Because of the research mission
of the HCSS division, the project had
two main goals. The first goal was to de-
liver a working controller. The second
goal was to exercise, evaluate, and try to
enhance a strong software development
methodology. Since HSCC is a security
system, the methodology has to support
a full range of development aspects from
requirements through very rigorous
evaluation by independent evaluators. In
addition to being rigorous, it should also

be cost-effective in time and money.

Given the goals and

the limited resources of our research

project

organization, we in the HCSS division
needed an industrial partner. We found
the ideal partner in Rockwell Collins.
One reason for teaming with Rockwell



FEATURE

Collins was their capabilitywith the with thesecurityevaluationwork done by use clear helpful names and well-chosen
AAMP7G microprocessor and high- other NSApersonnel. abbreviationsWe havea house styldor
assurance FPGA development. The The approach we chose for thehotationaldetails such as capitalization.
AAMP7G supportsstrict time andspace HSCCproject wasor HCSSresearchers The importantpoint is thatboth writers
partitioningin hardwareandhas received {5 (ake the lead in writing control and readers of Z benefit greatly from
an NSA MILS certification based in part  gq¢vvare requirements in the form oft consistent style. The specific details
on a formal proof of correctnes of its functional specifications in Z. Rockwell of the styleare not nearlyas important
separation kernel microcode, as specified 1o e specifications as s the fact that there is a set of standard
by the EAL-7 level of the Common input into theirestablishectievelopment conventions. In our finished documents,
Criteria [1]. The formal verification of process. They would look for We adheredstrictly to the principle that
the AAMP7G  partitioning system was opportunitiesto strengthen the process€Very Z paragraph was immediately
conducted using theACL2 theorem including the support for evaluatiooy Preceded by an accuratetural language
prover and culminateh the proof of & o yine ang money by taking advantagdanslation.
theoremthat the AAMP7G partitioning of the formal specifications, Since the HSCC projecias to
microcode implements a high-level produce the controllerfor a crypto
security policy [2]. system, we had to describe, at a suitable
Perhaps more important than Over the last ten years, HCSS level of abstractionthe main work of
their hardware capabilities Rockwell yesearchers have worked with othethe system. On the outbound daath
Collins has a solid approach tOyrsanizations using Z in support of a this includes accepting, filtering, and
software developmentlt features an ariety of developmenprojects We use  formatting unsecured datan the Red
integrated, model-based development e 7/EVES [7] support tool and have Ingress datacceleratorencrypingin the
suite of tools—a toolchain—with a ¢5yng it quite suitable for our needs. encryptcore:andformattingandsending
focus on providing a domain-specific  gaseq on our experience, we chose to usecuredataout in the Black Egress data
modgling enVir(_)nment that abstracts Z to write functional specifications on this ~ acceleratorThe inbound data path is a
the .|mplementmon Qetalls, promoFeS high-assurance controller project. mirror image with a decrypt core.
archltectu(;allevel fde5|gn., andbprowdes On this projectwe triedto follow From this basisystemanalysiswe
automated  transiormations between good habitsacquiredover the years.We could see what control data structures

the problem domain formalisms and . .
the taget platform.The tools simplify think carefully about names and try tchadto be provided by the controller to

code developmentand facilitate the
applicationof automatedormal analysis Rl DA BE DA

tools. In additionthe toolchairns capable é(ne\i ograss mmmm,ﬁ (Black Egress Data

of interfacing directly to a simulation PolicerDB
Control Block

environment,providing another levebf
assurance of design correctness.

@
played the role of customersand read $ $ $

and commented on draft specifications RE_DA BI_DA
and designs il’l Z written by Praxis s (Red Engress Data Accelerator) (Black Ingress Data

For their part, HCSS researchers
have experience in the Z specification
language [3]. They have written Z
functional specifications and design
descriptions for  several internal
development projects [4]. In these
projects, [5,6] HCSS researchers

outControlSAs inControlSAs

High Integrity Systems. In additiorto Peliron | St
experiencein the requirementsstageof
developmentHCSS people are familiar Figure 1: High-Speed Crypto System functional block diagram
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Figure 2: Z specification of the routing table database

properly manage the system. Basically,
the system had to match each incoming
piece of user data with the right crypto-
graphic algorithm and key material.
Secondary functions such as managing
and updating key material were handled
next. We had to define a system control
protocol to convey system management
messages back and forth between the
controller and the other subsystems. After
specifying this basic functionality of the
system and the controller, we worked
on the functional description of the
subsystems.

By way of example, the Z schema
that specifies the controller’s routing table
is shown in Figure 2. The specification
describes the contents of the database,
the maximum size of the database, and
further constraints on the data (e.g., no
duplicate addresses).

The work described in this paper is
part of an ongoing research program. An
early version of a system specification was
written over a period of about 18 months.
It consisted of 185 pages of Z and English.
Using that document, specifications for
the six subordinate subsystems and a
lower level communication protocol,
totaling 290 pages, were written in about
eight months. Finally, the revised High
Speed Crypto (HSC) System Control
Specification, Version 2.0, 27 January
2010, containing 263 pages, was written
in approximately seven months.

Model-based development (MBD)
refers to the use of domain-specific,

186 A High-Assurance Methodology for the Development of Security Software

graphical modeling languages that can be
executed and analyzed before the actual
system is built. The use of such modeling
languages allows the developers to create
a model of the system, execute it on their
desktops, analyze it with automated tools,
and use it to automatically generate code
and test cases.

3.1 HSCC software
development using MBD

Software for the HSCC system was
developed in two parts. Some code was
hand coded by a human guided by the Z
spec and general engineering knowledge.
Other code was generated using portions
of the tool chain in Figure 3.

System software (drivers and

interrupt/trap handling) and portions of
the high-level application code (message

formatting and control processing) were
in hand-coded SPARK.
includes

implemented
This code
annotations to enable use of the Praxis

information flow

toolchain and to provide assurance of
correctness.

Database transactions were de-
signed and developed using the Rockwell
Collins MBD toolchain, Gryphon [8].
Simulink/Stateflow models were created
for each database transaction. Each model
was then tested via simulation in the Re-
actis tool to discover and correct obvi-
ous errors. When complete, the Gryphon
framework is used to translate the model
into the Prover tool. Gryphon supports
several back-end formal analysis tools,
including Prover, NuSMV and ACL2; for
this project, Prover was deemed to have
the best combination of performance and
automation. Prover is used to exhaus-
tively verify each transaction preserves
properties (derived from Z specifications)
about the database it is acting upon. The
Simulink model proven to be correct was
then used to generate SPARK-compliant
Ada95 for use on the target. Figure 3 il-
lustrates the process flow.
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The HSCC software developmenintegers and real numbers, through thible.The inputs (at left) are the routing

process relies on a several tools: use of integratedecision procedures for table [Rt_Tbl] and the destination en
Simulink®,  Stateflow®, and real and integer arithmetic. cryptor address(Dest_Encr_Addr) for
MATLAB® are products of The By leveragingits existing Gryphon which to searchThe output(at right)is

MathWorks, Inc. [9] Simulink was chosentranslator framework, Rockwell Collins & Boolearvalue(Found] resultingfrom
for developmenbecause it is the standardiesigned and implementeal toolchain "€ Séarch.The rectangulamlock in the
model-baseddevelopmentenvironment capable of automatically generating S€NteNS a Simulink subsystenblock that
at Rockwell Collins and has extensive SRARK-compliant Ada95 source code implements the database lookup.
existing tool support, includingsupport from Simulink/Stateflow models. Typically, a transaction model
for formal analysis. ) will contain a Stateflow chart inside the
Reactis® [10], a product of 3.2 Transaction development Simulink model. Stateflow is well-suited
ReactiveSystems, Inc., is an automated ~ Simulink/Stateflow modelsare used ~ to the implementatiorof the database
test generationtool that usesa Sim- 25 thecommonstartingpointfor boththe operations.The screenshoin Figure 5
ulink/Stateflow model as input and auto- implementatiorandanalysisEachmodel showsthe contats of the Simulink sub-
generates test code for the verification CO'T€Sponds to a single database transaystem block depicteth Figure 4.The
of the model.The test suites may betion. Model inputs correspond to SRK  heavy verticabar at the left is a Simulink
used in testing of the implemiation for Procedure®in” parametersand outputs bus selector Simulink bus objects are
behavioralconformanceo the model,as correspond to “out” parametedote the roughly analogous to a record Aula or
well as for model testing and debugging databas@bjectusedby eachtransaction SFARK. (TheReactistool does not allow
Gryphon [8] refers to the Rockwell modelmayappeasas bothaninputandan bus objects as 1nput§ to Stateflow charts,
output if the database is modified by the SO a bus selector is used to separate the

Collins tool suite thatautomatically . } .
translates from two popular commercialransactionin this case, the database obcomponentparts of thebus objectinto

modeling languages Simulink/jeCt accgsappears as an “in-duparam  separate inputs to the Stateflow chart.)

Stateflow® and SCADE™ [11], into ©terin thegenerate¢ode.For eachdata The lage rounded rectanglblock is a

severaback-endanalysistools,including Pasepnemodelmustbecreatedoinitial- Stateflow chart.

model-checkersand theoremprovers. 12€ thedataobject,in additionto models As statel earlig, a modelmust be

Gryphon also supports code generatiol? perform necessary transactiof@ld, built for each transaction each database.

into SARK/Ada and C. Gryphon usesdelete,lookup) on the databaséddi- In the case of the routing table, these are:

the Lustre formal specification language ~tionalmodels are requirefbr the formal  ynit — procedure to initialize the routing

as its internal representatioand has analysis to moddhvariantson the data  table data structure (called upon reset)

been used at Rockwell Collins on severdlaseobject. This topic will becoveredn  Add - database transaction to add a

significant formal verification efforts ~More detail in subsequent sections. routing record to the routing table

involving Simulink models. The screenshot in Figure 4 shows a Deletg - database transaction.to remove
Prover [12] is a best-of-breed sample Simulinkmodel that contains the 2 "°Uting record from the routing table

commercial model-checking tool for Dest_Encr_Addr_Found lookup func- query to determing oxistence of

analysis of the behaviaf software and tion performedon theroutmgtable.Th|§ destination encryptor address

hard-ware models. Prover can analyziinctionperforms a lookup intherouting . o 0 A0 lict — database lookup

both finite-state models and infinite-state  table to determine if the specified desti- to return list of addresses mapped to an

models, thais, models with unbounded nation encryptor address is found in the encryptor address

Dest_Encr_Addr_Found - database

Figure 4: Destination Encryptor Address Found model Figure 5: Stateflow chart inside the model
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procedure Init (

3 Dest_Addr

3 Dest_Encr_Addr

ReTol Rt_Tbl :out
Init
procedure Add (
RLTEI Rt_Tbl_out Rt Tbl :in out

Dest_Addr :in

Response>

Add

3| RLTbI
Dest_Addr in

Dest_Encryptor Addr Found

procedure Delete (
Routing Table out| Rt_Tbhl :in out
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RUTbl

Dest_Encr_Addr

Rt Tbl :in
Found

Dest_Encr_Addr_Found

RUTbl

Dest_Addr

Rt _Tbl :in
Dest_Addr :in

Is_Valid

Dest_Encr_Add

Get_Dest_Encr_Addr

R Tbl

3| Dest_tncr_Addr

Is_Valid Rt_Tbl :
. Dest_Addr :
Dest_Addr_List| Isi\lalid =

Dest_Addr_Coun

Get_Dest_Addr_List

Routing Table Types.Routing Table Byp

Routing_Table Types.Routing Table Type ;
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Routing Table Types.Routing Take Type ;
Routing_Table Types.Address Type ;
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Routing Table Types.Address Type )

procedure Get Dest Addr List (
in Routing_Table_Types.Routing Table Type ;
in R outing Table Types.Address Type ;
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Dest Addr List :
Dest_Addr_Count :

out Routing Table Types.Dest Addr List Type ;
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Figure B: Transaction models and associated SPARK signatures

Get_Dest_Encr_Addr - database lookup
to return encryptor address mapped to a
destination address

the
provided by each model, alongside the

Figure 6 shows interfaces

generated SPARK procedure signature.

3.3 Invariant modeling

To perform formal analysis on the
transaction models, it is first necessary
to model any invariants on the data
structures. These invariants are taken
directly from the Z specification. As an
example, the invariants shown in Figure
7 appear in the Z specification for the

routing table.

This specification indicates that no
duplicate destination addresses or dupli-
cate encryptor addresses may appear in
the routing table. These invariants are
checked by the no_dups model (shown
in Figure 8). Given a routing table input
[Rt_Thl], the model checks that no dupli-

Figure 7: Z specification invariant sample

I kda: knownDestAddresses; rry, rra: routingRecords
M kdall rri.destinationAddresses |l kdall rr.destinationAddresses

0 rry, rro: routingRecords

0 rry.destinationEncryptorAddress = rra.destinationEncryptorAddress

I
I
I 0 rr=rrm
I
1]
I

0 rr=rm

cate destination encryptor addresses exist
in the data structure and sets the output
Boolean values accordingly. Note that the
number of Boolean outputs in the model
is determined by the internal representa-
tion of the routing table data structure,
and that the condition in which all four
Boolean outputs are “false” indicates that
both invariants hold.

3.4 Formal verification

In order to perform the formal
verification of a database transaction, we
need to establish two kinds of properties:
1) data invariants over the databases (as
defined by the Z schemas defining each
database) and 2) transaction requirements
that ensure that the operation performed
by a model matches the Z schema for
that transaction. The necessary models
include both the transaction model and
any invariant models associated with the
relevant database(s).

3.4.1 Proof strategy

The proof strategy employed for
the data invariants is induction over the
sequence of transactions that are per-
formed. We first verify that the Simulink
models responsible for initializing each
database establish the data invariant for
that database. This step provides the
basis for our induction. We then prove
every transaction that modifies a data-
base maintains the invariant for that
database. More concretely, on the “init”
models we use the model checker to de-
termine whether or not the data invariants
hold on the model outputs. For the other
transactions the proof strategy is to assume
the invariants in the input “pre” database
(prior to performing the transaction), and
then use the model checker to determine
the hold in the
output “post” database (resulting from
performing the transaction).

whether invariants

We prove all the invariants required
by the Z specification and also additional
invariants  involving implementation
details related to realizing the Z databases
in Simulink/Stateflow. For example,
a linked-list representation is used for
many of the finite sets described in the
Z document. In this case, additional
invariants establish that the linked list is

a faithful representation of the finite set.

The transaction requirements for
each operation are specified as additional
properties that must hold on the “post”
database. For example, when deleting an
element, these properties ensure that the

Figure 8: Sample invariant model

Rt_Thl

Rt_Thl

dup_dest_addr_map_entry 4’

dup_dest_addr_map_entry

dup_dest_encr_addr_list_entry —}

dup_dest_encr_oddr_list_entry

dup_dest_addr_list_entry 4»

dup_dest_oddr_list_entry

dup_dest_oddr_revmap_entry 4»
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FEATURE

elementin questionhas beenremoved accuratelydeterminethe necessary “pre” through traditbnal software testing

from the database. and “post” conditiondor eachdatabase methods.With all these components in
3.4.2 Formal verification results transaction. our softwaredevelopmentapproachwe
summary The use of a model-based approacdhave exercisea viablemethodologyto

to transaction developmenprovides deliver high-assurance software with a
early simulation capabilities,leadingto much greater level of confidence than
cearlier discovery of errors in both thesoftware develped through traditional
specification and in the implementation. ~2@Pproaches.

The use of automatedode generation The use of SRRK information
removes the possibility of human codinglow annotations for Ada95 code at
errors. The application of automated the system level provides assurance
model checkersprovides a proof of the system code is properlyouting
correctness at a level unattainable information to each of the devices

The formal verification effort for
theprojectas a whole resultad theproof
of some 840 properties for the HSC
databasexf which 140 were writterby
the verification team and the remainder
(mainly  well-formedness checks)
automaticallygeneratedby the Gryphon
framework. Verification required less
than five percent of total project effort
over the course of seven calendwnths.

3.5 Code generation

Codegenerationis performedafter
a transactiols proven to satisfy atf its
invariantproperties. Code generatifor
this project is accomplishettirough the
use of a translatiotool, developed during
the program,that leveragesthe existing
Gryphon framework to generaB&#ARK-
compliantAda95 source code for use o
the AAMP7G, including the automatic

generation of SRRK annotations. is used with increasing frequency in the
development of aircraft avionics. By using a model-based development

approach, developers can detect errors early, avoiding more expensive fixes
later on.

All of the transactions areompiled
into single Ada95 packagdor use by
the system programmefhe procedures
in the packagealeclarationare shown in
Figure 6.

Model-based development was used successfully to develop the ADGS-
2100 Adaptive Display and Guidance System (ADGS) Window Manager.
In modern aircraft critical status information is provided to pilots through
computerized display panels like those shown. The ADGS-2100 is a Rockwell
Our experience developing the Collins product that provides the heads-up and heads-down displays and
display management software for next-generation commercial aircraft.
The system ensures that data from different applications is routed to the
correct display panel, and in the case of a component failure decides which
information is most important and routes that inaformation to the correct
display panel. The displays are essential to the safe flight of an aircraft since
they provide critical flight information to the flight crew.

HSCC system have shown thdhe
methodologydescribed in this paper is
a viable process for the developme
of high-assurance software for use i
cryptographic systems.

NSA-provided specifications
written in the Z formal notation proved
to be superior to those written in Englis
language in producing a completd
and unambiguous set of software
requirements. Using these specifications
as the main development artifact,
Rockwell Collirs was able to quickly and

Rockwell Collins has developed tools that translate models used to
develop systems like the ADGS-2100 to a suite of analysis tools. Verification
throughout a design process—while a design is still changing—leads to
earlier error detection. During the ADGS-2100 development project, 563
properties were developed and checked and 98 errors were found and
corrected in early versions of the model where they are much easier to fix.
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in the HSCC architecture. Hardware
enforced (AAMP7G partitioning) red/
black separation serves as the final

Auditing Queries: Does
information produced by
Domain A always flow through

a guard condition before — s sentinel in preventing unintended red/
passing to Domain B? Information Flow black communication. In our judgment,
:l’l.vl ( ont]"xt . . .
- the methodology described in this paper
X ¥y W = «

Checking / Inference s{ V Partition of Flows is sturdy enough to support full EAL-7
T by criticality level certification of a production encryptor
! a b c
‘ based on this research prototype. @

Information Flow
Visualization

Source Code

Developing and certifying systems with multiple levels of security (MILS)
has proven to be extremely challenging. Despite the widespread use of so-
phisticated integrated development environments (IDEs) with analysis and
verification tools for conventional software development, IDEs that provide
dedicated support for specification and certification of MLS systems have
yet to emerge.

Researchers at Kansas State University are moving to fill this void
by developing an IDE called Chispa. Chispa is a visualization, analysis, and
verification tool designed to evaluate IMILS systems against associated in-
formation assurance requirements. For program development, Chispa uses
SPARK, a safety-critical subset of Ada developed by Praxis High Integrity
Systems and distributed by AdaCore. SPARK is used by various organiza-
tions, including Rockwell Collins and the National Security Agency (NSA), to
engineer information assurance systems such as cryptographic controllers,
network guards, and key management systems.

Chispa uses static analyses to automatically discover information flows
in source code. A variety of visualizations are provided to help developers
determine if these flows conform to desired MLS policies. System and pro-
cedure parameters can be tagged with security policy levels (Top Secret,
Secret, Unclassified). Chispa uses its flow analysis to propagate this infor-
mation to all program statements and to color each statement to indicate
the security level of associated data. Chispa includes a software contract
language that makes it easy for developers to specify formally the condi-
tions under which information from one data component or security domain
is allowed to flow to another. Chispa uses advanced automated deduction
techniques to check that procedure and system implementations correctly
follow their information flow contracts. Quality assurance teams as well as
evaluators for certification authorities can use Chispa’s analysis and visual-
ization capabilities to improve the effectiveness of audits and code reviews
and to pose automated “what if?” queries related to system assurance.

An early version of Chispa is being used to develop components of the
high-speed cryptography engine project at Rockwell Collins.

20 A High-Assurance Methodology for the Development of Security Software
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Correct by Construction:
Advanced Software Engineering

4 ™\ verB60years have passed since the introduction of computers

Nand we still cannot get software right. Why does correct
Q software elude us? First, software systems, maybe the
most complex creation of mankind, exceed an individual's capacity
to understand. Many different software engineering techniques
have emerged over the years to address this complexity, for
example structured and object-oriented programming, but
failure-prone software persists. Second, subsequent changes to
software obscure the author’s original intent. In fact, no robust
processes or techniques have emerged in practice to document
design decisions so maintainers and developers can readily
understand the implications of subsequent software changes.
However, recent research in correct-by-construction techniques
may help. By using formal specifications and automated synthesis
we can make correctness claims about these systems and their
evolution via an enhanced software engineering process that
utilizes formally-described design knowledge. We will never obtain
perfect assurance of correctness or security, but we can realize
major improvements over current practice.

Formal methods are defined in this paper as traditionally
applied in the information assurance domain and in correct-by-
construction processes. A particular correct-by-construction
(CxC) methodology, which uses the Specware tool, is then
described. Specware supports the production of high-assurance’
code. A programmer using Specware does not directly write or
modify code. Instead, the technology creates code systematically
and automatically from the programmer’s input (the formal
specification) and guidance (formally applied design decisions).
In conclusion, new CxC techniques that have impacted real-world
problems are noted as well as a description of how they could help
resolve information assurance problems.

! “High-Assurance” in this paper means that the system meets its specification as expressed in the formal language.
This includes functional correctness as well as other types of expressible properties.
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1. CxC foundations

Many areas of computescience
research provide the foundation for
this work with CxC methods: artificial
intelligence, programming languages,
formal methods, and software engineering.
The US Air Force Rome Air Development

Center (now Rome Laboratorgyovided

A variety of tools have emerged that

have prompted industry and academiengineering process.

to experiment with CxC methodologies:

knowledge representation techniques

and rewriting logic from the artificial
compiler

intelligence community,

enhancements and semantically well-

defined languages from the programming

the impetus for CxC research in 19g3anguage community, reasoning techniques

by
Software Assistant report [1], which
became the basis for their Knowledge-
Based Software Engineering (KBSE)
program. KBSE is based on capturing
all design decisions in a reusable and
checkable form. However, the complexity

sponsoring the Knowledge-Based

of the capturednformation approaches

the complexity of the software itself.

Relatively new areas of computer
science are providing the structure and
power to handle this complexity and
achieve KBSE’s goal by using CxC
methodologies. Industry uses the term
CxC to mean methods that range from
good process with some formal support,

to automated@onstruction of the software

from specifications [2,3]. Some examples
supporting CxC include
model-based software engineering and

of science

correctness-preserving transformations.

Specware, the CxC system used
for the example in this paper, lies toward
the automated end of the CxC spectrum,
providing an emerging capability to
generate correct implementations from
Although
not

software specifications.
someone using Specware does
need to know category theory (CT)—a
unifying concept in mathematics, CT
provides the foundation for Specware’s
ability to structure the knowledge base
in such a way to make compiling small,
understandable software artifacts into
complex ones practical.

from the formal methods community,

methodgan mean simply a good software
Although FM
require good processes, good processes
by themselves do not satisfy the FM
definition, nor do they guarantee good
results. A FM-based software engineering
process can achieve a qualitatively more
robust solution.

FEATURE

The FM process can be depicted

as a triad. The Formal Methods Triad

and software process improvements ar&igure 1) represents a process for

support tools from the software engineering
community. This paper describes one
approach to CxC engineering.

2. Advanced software
engineering

The Specware software
development environment provides a
good example of how CxC software
development incorporates formal methods
in ways that can benefit the information
assurance (IA) community. In a variety of
applications, Specware has already proven
to be a powerful tool for specifying,
designing, and developing code. Such
CxC technologies have the potential to
expand the trustworthiness of TA domain
applications. What do
we mean by “Formal
Methods"?

2.1 Definition of
formal methods

Formal methods
(FM) are used to
develop a solution to
a problem through
a prescriptive pro-
By applying
mathematical  rigor,
a problem can
be studied with
precision. In industry
the term formal

CESS.

/

moving from requirements to a solution.
At the top of the triangle is a real world
problem defined by requirements. To
arrive at a workable solution to these
requirements, the problem and solution
must be described in detail. Therefore,
the problem description and the solution
description comprise the foundationof
the triangle.

Arrows around the triangle represent
the processes used to get from each point
to the next. The arrows point forward to
trace the main flow, but feedback and
reiteration are central to the process.
Returning to a previous step would
occur, for example, when inconsistent or

Real World Problem

Interpret
ormal

Methods
Triad

>

Figure 1: The Formal Methods Triad
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Software lifecycle cost reductions
due to a CxC development process

In a recent study, Kestrel researchers
examined the suite of documentation required
for certifying Type 1 devices, and the possibilities
to extend Specware’s correct-by-construction
(CxC) development process to auto-generate
certification documents. Our thesis is that
by using automated tools to generate both
the software and significant portions of its
certification documentation, a CxC approach
will dramatically lower lifecycle costs, including
the cost of recertification. Furthermore, by
speeding up the recertification process, a CxC
approach facilitates the evolution process,
resulting in higher quality products over the
lifecycle.

To quantify these claims, we first
estimated the cost reductions that arise from
a CxC process independently from certification
costs. The dominant factor seems to be the
size reduction in formal specifications relative
to executable code. This size reduction varies
considerably over projects, but a ballpark figure
of 4-5x is consistent with the JavaCard project
and related efforts. A 4-5x reduction in size of
the formal text usually correlates with a similar
reduction in development and evolution costs.
Consequently we estimate that, independent
of certification costs, a CxC process should
reduce lifecycle costs by roughly 75-80 percent.
Second, we estimated the cost reduction due
to extensions of the CxC process that allow
auto-generation of certification documents as
a by-product of the code generation process.
For each of the thirteen documents required
for certifying Type 1 devices, we estimated
that the average cost savings vary from a high
of 75 percent for Formal Security Policy Model
(FSPM) documents to a low of 20 percent for
a Security Verification Plan and Procedures
(SVP) documents. Assuming roughly equal
weight to each of the 13 documents, we
estimated an average overall cost reduction of
about 59 percent per certification application
due to using CxC methods.

These two estimates can be combined in
a variety of ways. For example, if we assume
that certification costs are roughly the same
as development costs, then CxC brings about
a 70 percent reduction in lifecycle costs
(evolution plus certification); that is, a CxC
process will produce a certified product for 30
percent of the cost of a conventional process.
If we assume, as is the case in aerospace
applications, that the cost of certification is
about 7x development costs, then we obtain
an estimate of 63 percent cost reduction for
a CxC process. This leads us to conclude that
a CxC process will produce a certified product
for roughly 30-40 percent of the cost of a
conventional process. This estimate does not
account for the possibility that some forms of
certification become unnecessary because of
the strong form of evidence provided by a CxC
process.

incomplete requirements are discovered
during the formal problem specification
phase. Discovering errors early in the
process can yield significant cost savings
in the long run.

The arrow pointing from Real
World Problem to Problem Description
is labeled Specify because this step of the
process uses formal language to describe
the problem. The more expressive the
language used, the more complete the
analysis can be. The Analyze step moves
the process from a problem description
to a solution description. Methods that
support this analysis with mathematical
rigor (e.g., FM) are used. Finally, to
arrive at a solution, we map the result of
the analysis back to its meaning in the
problem domain. This is the Interpret step
in the process.

As a FM process example, consider
the real world problem of determining
how much wind a suspension bridge
can withstand. The problem can be
described by a set of integral equations
representing a property of the bridge
affected by wind. Solving these equations
produces a solution description. The
bridge engineer would select appropriate
integral calculus equations—tools from
his engineering domain knowledge—and
insert the bridge’s specific requirements
into them and derive a solution. If the
calculations from the formal analysis
determined that winds sufficient to cause
the bridge to collapse occur frequently,
the interpretation would probably lead to
condemning the bridge. Of course, no one
would build a bridge before analyzing its
design, but software is routinely built and
then analyzed afterward!

2.2 The use of formal methods
in the DoD

The US Departmentof Defense
(DoD) has a long history of applying FM.
In the 1980s the DoD Computer Security

24 Correct by Construction: Advanced Software Engineering

Center developed what is commonly
referred to as the Rainbow Series of
standards, beginning with the Trusted
Computer System Evaluation Criteria
(TCSEC) volume, better known as the
Orange Book [4]. In 1996, the National
Security Agency’s National Computer
Security Center (NCSC) replaced the
Orange Book with the Common Criteria
[5].
community’s
subsequent disappointments regarding
FM, formal methods may still have a
future in building high-assurance systems.

The DoD has initiated significant
efforts to incorporate FM in the design

Despite the computer security

early excitement and

and evaluation of information security
systems. Most notably, FM would apply
at the Design Phase of the development
and would focus on whether the design
has the desired security properties,
or at the Evaluation Phase where the
implementing code would be analyzed for
security vulnerabilities. These approaches
have been implemented primarily in the
research community and rarely in product
development until recently.

2.2.1 Formal methods at design time

Formal methods are applied during
the design phase by developing formal
specifications of the system and the security
policy, typically at a very high level of
abstraction. The point of the abstract
specification is to define the “what” the
system should do and not the “how” it
should do it, because the “how” normally
the
implementations,

biases system toward particular
thus

precluding the best implementations.

potentially

To begin this process, the system
security
policy (a set of requirements) and a
system specification. These requirements
are expressed most often in natural
language. Early on, developers created
formal specifications manually, with little

developer creates a system



automated support. They would often reuse
components of existing specifications,
adapting them in much the same way as
programmers reuse code. Later, theorem-
proving frameworks evolved to help
standardize and automate processes of
writing system specifications and security
The different
proving tools employ unique variants of

requirements. theorem-
formal logic (i.e., a specification language),

each having its own strengths and
weaknesses. Early tools and languages used
for specifying system requirements (some
are still used) included EHDM, Gypsy, Ina-
Jo, Larch, ACL2, Z (zed), NQTHM, GVE,
PVS, SDV, Z-EVES, and the Larch Prover.
Security policy would then be described

using the same formal language.

Given the descriptions for the
system requirements and security policy,
the developer, when able to understand
them, would “prove” that the system
specification the
policy. Usually these proofs required
building an infrastructure of lemmas
that rarely could be reused. The verified

enforces security

high-level design may or may not reflect
implementation, although
implementations built from verified
designs have a much greater chance of
meeting their requirements.

the actual

An improvement to this method

for achieving confidence that the system
specification guaranteed the security policy
would be to add detail to the specifications
and reiterate the process. This, of course,
required some kind of demonstration that

Rarely, until recently, has anyone
attempted to iterate refining a specification
by adding detail down to the code level,
and in most cases they did this on small
slices of the system. The cost of producing
code from this process was prohibitive.

This process of formally proven
specifications, once too-costly and labor-
intensive, has improved. Even so, the
benefits of formal specification without
complete proofs have provided sufficient
value to be required for Common Criteria
EAL7 rated systems.

2.2.2 Code-based analysis

The National Security Agency (NSA)
has also applied FM through code-based
analysis, mainly in support of evaluations
of information assurance systems. Code-
based analysis differs from the design phase
FM process in that, instead of developing
a formal description of what the software
should do, code-based analysis attempts
to discover and prove properties about
software code itself. For example, the user
might identify points within the software
where properties of interest must hold,
and then annotate the code with stylized
comments (formal language) about these
properties. The developer then applies
a tool that understands the semantics of
the language and generates verification
conditions based on the code and
annotations. This process outputs a set of
logical statements that then can be used to
validate these user-desired properties.

In the analysis process we attempt

the more concrete system and security find and prove the targeted properties

policy specifications indeed represented
their corresponding abstract specifications.
At some point, usually leaving a significant
gap between the most detailed specification
and code, iteration would stop and the
specification would become the basis for
the code. Of course, we know that no code
would ever be written before completing
the specification!

of the software. A SAT solver (a Boolean
“Satisfiability” SAT
specialized procedures to attempt to
satisfy test conditions) or an ATP (an

or solver uses

JAVA Card Runtime Environment

We wused Specware to formally
specify a real-world smart card operating
system, the Java Card Runtime

Environment (JCRE). The JCRE consists of
a JAVA virtual machine (VM) and system
libraries (e.g., for 1/0 and cryptography),
along with card management capabilities
according to the Global Platform
Standard. The formal specification is
about 30,000 lines long and over 6,000
consistency proofs of it have been
mechanically verified so far. A desktop
simulator (reference implementation)
has been generated by refinement from
the formal specification; the correctness
of the refinements is currently being
mechanically verified. A C implementation
for a commercial chip has been manually
derived from the formal specification;
a new version of this implementation is
currently being generated via automated
refinements, with mechanical proofs. We
anticipate that this will be the highest

level of assurance yet achieved, and that

—
0

% will reduce the cost and increase the
confidence of a Type 1 certification.

Specware has also been used to study
the extension of (standard) JCRE with
MILS and MLS separation. The study has
been carried out on a formal specification
idealized subset of the JCRE.
Separation policies have been formally
specified, along with run-time monitors

of an

to enforce the policies. The monitors
t ffave been formally proved to guarantee
the policies. The monitors and the formal
proofs are currently being extended from

the idealized to the complete JCRE.
See http://www.kestrel.edu/java

for more information.

“automatedtheoremprover” derives the

truth of the specified conditions from more
basic facts) is applied to these verification
conditions. We get any of three possible
outputs from this analysis: the conditions
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can hold; the conditions do not hold; or in
some cases, the analysis cannot determine
either way if the conditions hold or not
with the computational resources given.
The first two conditions tell us something
useful about the code.

The source and/or binary code level,
the detail required to perform the analysis,
can be cost prohibitive. However, as
better provers and solvers become
available and with sheer computing
power increases, these methods are
becoming more practical. We already see
industry using code analyzers based on
FM such as CodeHawk, Java Pathfinder,

and ESC/Java2.

There is, however, at least one CxC
approachthat combinesthe bestof both
design verification and code analysis.

2.3 A correct-by-construction
approach

The formal described
previously try to ascertain something after
the fact. In the design phase, FM are used
to verify the specifications after writing

methods

them, and in code analysis the analysis is
applied to code already developed. The

alternative would be to simultaneously
conduct the analysis while creating the
specifications/artifacts. By maintaining
or enforcing the properties of concern
through the development process itself,
design errors could be caught early, when
repair is less costly. Let us look at the CxC
approach for a software development.

The developer typically starts with
some notion of what the system should do.
Ideally, creative programming energy is
directed at capturing system requirements
in a specification. This is hard work! CxC
with automationmoves thework from
low-level programming to high-level
problem development.

A CxC approach solves the problem
incrementally by developing requirements
and deriving satisfactory implementations
with ever increasing levels of refinement.
This is done by using FM to automatically
compute code from specifications. CxC
industrial practices vary by the degree of
automation of the compute process. An
ideal CxC approach would completely
automate this process. Although full
automation is not the only way to go, it

Software System Development

o
X
Triad
.

Figure 2: The CxC Triad
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greatly enhances the benefits of CxC for
reuse and recertification—an advantage
industry is starting to recognize [3].
Figure 2 illustrates the CxC model
used for our software development
project. At the highest level of abstraction,
the requirements, expressed in formal
language, plus any existing domain
knowledge specifications are used to
create a formal specification, or model.
This step is represented in the diagram
by the Specify arrow. Merely formalizing
the requirements in this way can expose
inconsistencies and ambiguities early in
the process, saving money and time. At
lower levels of abstraction, in the Compute
step in the diagram, the implementation
can be derived through a posit-and-prove
approach or a transformative approach.

In the posit-and-prove approach,

programmers create the low-level
specification and then propose a
mathematical argument, with varying

degrees of formality, that will prove
whether or not the solution specification
obeys the problem specification. A code
generator is used to generate the code
from the low-level solution specification.

With a transformative approach,
the user takes the high-level specification
of the system and iteratively applies
that apply
science and problem domain knowledge
to get an efficient and correct low-level
executable specification. This process

transformations computer

terminates after transforming the entire
problem specification into an executable
specification. Remember that the initial
specification defined “what” the system
should do. Each transformation adds detail
and makes decisions that bring it closer to a
particular “how” the system should do it. In
addition, each transformation preserves the
properties and functionality of the source
specification in the target specification
(the result of the transformation). Once the

“how” has been determined and expressed



as a formal specification, the next step
is to generate software in some target
programming language (as in the posit-
and-prove approach).

The high-level
description created from the requirements

initial formal
in the Specify step must still be validated
against the original requirements and
specifications in the standard way. Another
way to look at this, CxC simply tries to
automate the FM process for INFOSEC
systems by iterating the process all the
way down to code. This begs the question,
“Does such a tool exist?”

2.4 Specware, a
correct-by-construction tool

Yes, it does: Specware, developed
by Kestrel Institute [6]. With this tool we
can build specifications for requirements,
combine small specifications into larger
ones, implement design decisions by
refining specifications, and generate code
from executable specifications, all the
while providing for the proof that the
derived specifications and code enforce
the requirements.

Specware  [7,8,9,10,11]
version of Church’s higher-order logic
language. This
language borrows features from functional
and highly
automated theorem prover (ATP) languages,

uses a

for its specification

programming expressive
and is thus useable by many in the computer
science and theorem proving disciplines.
Researchers have used Specware
a wide range of specifications, from a
full-blown operating system (Java Card
Runtime Environment or JCRE) and a
mathematically assured separation kernel
(the Mathematically Analyzed Separation
Kernel [MASK], part of the Advanced
INFOSEC Module chip), to low-level
algorithms and data structures.

2.4.1 An NSAsecurity token

At NSA we used Specware to
successfully build a robust security token.

We contracted for the development of a
robust JCRE and robust applets running
on a specific hardware platform.
To create the JCRE,
specification was

a formal
developed and a
posit-and-prove approach was used to
refine the code. The complexity of the
initial specification evolved as standards
were added. Incremental changes were
easier to implement using Specware
than in standard software development
processes. Even though the Specware
tools used at the time were primitive
compared with later versions, they were
sufficiently robust to produce a working
JCRE, complete with cryptography and
some assurance of correctness.

Creating applets involved the
development of a domain-specific
(SmartSlang)
corresponding
with

SmartSlang a developer can specify

and a
(AutoSmart,
Specware).

language
compiler
produced Using
an applet more easily than by writing
Java Card code directly. The compiler
generates both the Java Card code for
the applet and a proof that the code

AutoSmart

The AutoSmart (automatic generator
of smart card applets) tool is an example
of a domain-specific CxC generator. It
features a specification language tailored
to the smart card domain, with constructs
to conveniently  capture concepts
like personal identification numbers,
cryptography, 1SO 7816 1/0 exchanges,
and so on. AutoSmart performs several
consistency checks on the applet
specifications, including a security analysis
that flags potential leaks of confidential
information like private and secret
keys. AutoSmart compiles the applet
specifications to Java Card code, which
can be compiled and loaded into a Java
Card. Along with the code, AutoSmart
also generates documentation for FIPS
140-2 certification as well as informal
documentation for the applets (e.g.,
tables of commands and internal data).
AutoSmart is currently being extended
with the capability to generate a machine-
checkable formal proof of the correctness
of the generated Java Card code with
respect to the input specifications. This
“credible compiler” capability enables
trust in the correctness of the code to be
shifted from the AutoSmart tool to a much
smaller and simpler proof checker, in the
spirit of proof-carrying code.

See http://www.kestrel.edu/jcapp
lets for more information.

Software System Development
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Figure 3: The Specware Triad
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Synthesis of propositional
satisfiability solvers

Dramatic improvements to propositional
satisfiability (SAT) solvers were made
during the last two decades [e.g., 1.2].
We used Specware to demonstrate the
automated generation of fast SAT solvers.
The main result was that we were able to
recapitulate many of the key design features
of a modern SAT solver using mechanized
representations of abstract and reusable
design knowledge. Starting with a formal
specification of the SAT problem (find a
satisfying assignment for a given set of
propositional clauses, if any), the overall
algorithmic structure of a Davis-Putnam-
Logemann-Loveland (DPLL) SAT solver
was calculated from the global search and
constraint propagation algorithm paradigms
[3.4]. Performance of the correct, but high-
level algorithm was improved by applying
problem-independent transformations for
expression simplification, finite differencing
[5], and data type refinement. Applying these
algorithm design tactics and transformations
in different ways resulted in a family tree of
SAT algorithm variants, including some novel
non-DPLL variants.

This project, together with previous
work on scheduling applications [6], provided
evidence that it is feasible to generate
customized high-performance solvers for
particular problems. Key features of state-
of-the-art SAT solvers, such as conflict-
resolution and learning, can be applied
mechanically to other problems.
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implements the specification. In addition, the compiler enforces properties stated in the
applet specification and produces reports to meet certification requirements.

Kestrel Institute succeeded in producing a working JCRE on the chip running
robustapplets. Smart card developers are now considering the formal JCRE specification
and the Specware toolset. However, given that Specware is not a commercial tool,
there is some resistance to its use. Commercial support is critical for wider adoption of
this technology.

2.4.2 Using Specware

Building specifications with Specware is no harder than programming. And
because high-level specifications should only stipulate “what” is to be done, not “how” to
do it, we can understand these top-level specifications much more easily than code. Thus
we can make our changes in the high-level specifications and avoid the more complex
low-level specifications by redoing the refinements. Most likely, the original design
choices will apply with minimal changes and the low-level specifications regenerated.
To illustrate this process, we take an example from the Specware tutorial [4].

2.4.2.1 Specification

In the Specware tutorial, the problem for which we want to specify and generate
a solution is determining the first match of a word within a message, where a word is
list of symbols and a message consists of a list of symbols and wilds (a wild matches
all characters). For example, the word “ABCD” would match at the first position of
the message “AB*D***” and “BAD” would match at second position.

Here is a typical specification:

WordMatching = spec
import Words
import Messages

import SymbolMatching

op word_matches at?(wrd: Word, msg: Message, pos: Nat): Boolean =
pos + length wrd <= length msg &&
(fa(i:Nat) i < length wrd => symb_matches?(wrd@i, msg@(pos+i)))

endspec

In this specification, two conditions are necessary for a word match: (1) there is
enough room left to contain the word in the message, and (2) all the symbols in the
word match their corresponding positions in the message. Notice that this is not saying
how to check these conditions; just what it means to match a word with a segment of
a message. Also notice that the specification for what symbol matching means (two
identical characters or one is a wild) is not in this specification at all, but in an included
specification named “SymbolMatching.” So the game in specification is to build up a
collection of specifications and compose them to say what is desired.

2.4.2.2 Design
Design involves the composition of a series of refinements to get an executable
specification. Each design decision is formally captured and is available for reuse for
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both exploring possible implementations of the current specification and for reuse in
other developments of similar systems. Consider how hard (and costly) it would be to
explore the design space using standard practice. With CxC, design space exploration
becomes doable.

The key steps in design are to specify/generate the “how” and define/generate
mappings between the “what” and “how” specifications. The mappings constitute
property-preserving refinement. If we get the “how” right with respect to the “what,”
we will be able to prove all obligations that Specware generates from the mapping
construct. Essentially with the properties proved, we ensure that the definitions in
source specification are theorems in the target specification. In other words our “how”
does correctly “what” we want.

Design is done iteratively until arriving at a specification for “how” to compute the
“what” from the high-level specification. (Specware has as a main goal the capabilities
to derive/generate low-level specifications, which is the intended mode of operation.
But this capability is still in its infancy.) Here is a specification of “how” to see if a
word matches a segment of a message:

op word matches_at?(wrd: Word, msg: Message, pos: Nat): Boolean =
if pos + length wrd > length msg
then false

else word matches aux?(wrd, removePrefix(msg, pos))

The first test checks if there is room for the word at this position. If there is
room, an auxiliary function is called to check from the current position if the word
matches symbol for symbol with the rest of the message. The “what” specification, the
one above, needs to be related to this “how” specification. This is done by mapping
between the two specifications. In this example, a transformation is used to automate
the construction of the refinement relating the word matching specifications:

WordMatching Ref =
morphism MatchingSpecs#WordMatching ->
MatchingRefinements#WordMatching {}

This mapping, called a morphism, maps the symbols in WordMatching to
corresponding elements in the target specification. In this example, all the names in the
high-level (source) specification (MatchingSpecs#WordMatching) are also in the low-
level specification, so the task is done (otherwise the name to name mapping would be
explicit within the {}).

2.4.2.3 Code synthesis

Specware can synthesize code in several different target programming languages.
Currently, there are several collections of low-level executable specifications
mapped directly to a program language. The most robust collection supports the Lisp
programming language—a natural fit to higher-order logic specifications. Much less-
mature collections exist for C and Java. The code synthesis is automatic, allowing

maintenance and enhancements to be
done at the specification level rather than
in code, thus precluding a number of
errors produced by code changes that have
unforeseen side effects. The user’s goal in
the Design phase is to complete his “how”
specification in terms of one of these
collections. Once done, a program can be
synthesized from the specification.

2.4.2.4 Proof processing

All
composition, and specification refinement

specification,  specification
constructs may require proofs to establish
and maintain properties through the
entire process. Proof obligations are
generated when the user requests them
and packaged for distribution to a proof
tool. The main proof tool available in
the Specware environment is Isabelle/
HOL [12], which has powerful automated
proof methods and integrated expert user
guidance. Isabelle has a large user base,
including industrial use.

Since the Isabelle theorem prover
is sound, proofs completed with the tool
provide assurance that the constructed
code is correct with respect to the
high-level specification. The Isabelle/
HOL language is close to the Specware
language, but with a few quirks. Isabelle is
difficult to use to prove some obligations,
as are all other proof tools now in use.
But, even though it requires effort to use,
the CxC process with Specware allows
for the complete proof of the system
refinement to code, yielding extremely
high-assurance software.

2.4.3 Correct-by-construction
successes

The CxC approach has demonstrated
practical successes. Praxis used CxC to
develop almost error-free code from a
formal specification of an enclave access
system called Tokeneer [13,14]. With
Tokeneer, a user presents a token and
biometric input, and then is either allowed
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or denied access based on a databasengfchine diagrams. Suppose you had

metrics, token ids, and user information.
The published results caused a stir in the
formal methods research community,
providing a much needed real world
example. Kestrel developed an alternate
specification of the Tokeneer system
[2] using traces of events, more abstract
than the state machine formalism used
in Praxis’s specifications, thus proving
additional properties.

Another Specware success, this
time from industry, is the Mathematically
Analyzed Separation Kernel (MASK)
[15]. This specification
more easily evaluated kernel code for
the Advanced INFOSEC Module chip,
developed by GE (then Motorola). Also
Kestrel demonstrated the benefits of
formal specification reuse for TARPA.
They generated an “idealized” JCRE for
single threaded Multiple Independent
Levels of Security (MILS) and Multiple
Levels of Security (MLS), and for multi-
threaded MILS and MLS separation for
smart cards. Not only were they able to

resulted in

reuse a lot of the original specifications,
but they generated run-time monitors
from these specifications and proved that
they enforce the separation properties.

SAT
successfully  generated

solvers have also been
using CxC
tools. Formal descriptions of the SAT
algorithms and SAT data structures exist
in Specware, so that various versions of
solvers can be generated automatically
using reusable refinement scripts. With
more research, even more successes could

be added to the list.

3. An extreme CxC vision

Where might CxC take software
development? Suppose you had a system
development environment where you
could take your system requirements
and produce formal specifications from
standard constructs like UML and state

libraries of reusable specifications for your
problem domain, for standard algorithms
and procedures, and for platform-
aware implementations. Consider that
the mere process of exploring a design
space and choosing an implementation
would result in a mathematically precise
implementation optimized for your

platform. In addition, automate the
refinement process while still allowing
user control to take advantage of human
expertise. We claim that such a system
revolutionize software

would our

development practices.

*Using CxC would improve time to
market: Variations of existing systems are
easily obtained through minor changes
to specifications and the replay of the
refinement to code process.

*Using CxC would improve time and
cost to certify: All design decisions are
captured; hence some criteriarequirements
can be generated automatically rather
than by manually searching the code.

*Using CxC would improve time
and cost to maintain and recertify:
Automation of testing and certification
evidence generation made possible in
this environment would solve the age-
old problem of maintaining consistency
between specification and code because
changes are made at the specification level
and the code is re-generated, keeping the
two in sync.

*Using CxC would increase the degree
of assurance to a qualitatively higher level.

Specware is a step in the right
direction and provides evidenceahat
such tools are possible. We need to push
CxC processes that have mathematical
precision if we ever hope to get a handle
on the complex software and hardware

systems of today. @
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Verified Software In
the \World

oftware is a critical component of the technological infrastructure. Many physical and
electronic devices are controlled by software, which offers unparalleled sophistication and
flexibility over coding in hardware. However, software is also a source of vulnerability.
Unreliable software can be a significant cost in the development of software-based systems.
Software bugs can be exploited to breach security and propagate malware. Software unreliability
has been estimated to cost nearly one percent of the GDP to the United States economy. The
technical challenges of developing and maintaining software are only growing in complexity with
the advent of cyber-physical systems, service-oriented architectures, and multicore processors.

Software development can be made highly rigorous. The theoretical understanding of software and
hardware models has existed for decades, but recent dramatic advances in the technologies of software
specification, design, and analysis make it feasible to carefully and productively examine large code bases
for errors. Interactions between the software and the physical and biological world, as well as with human
operators can be analyzed in this manner. The technologies for software analysis can also be used to find
security vulnerabilities and to identify strategies for safe parallelization.

The Verified Software Initiative (VSI) is an ambitious fifteen-year, cooperative, international project
directed at the scientific challenges of large-scale software verification. VSI is aimed at bringing formal
scientific methods for software design into wider use so that software is viewed as the most trusted
component in a system. The research agenda is directed at developing a comprehensive theory of program
correctness that is supported by a coherent suite of novel and powerful tools for designing, debugging,
composing, and verifying software. The theory and tools must be validated on a wide range of examples
and used to train a new generation of software engineers in the construction of trustworthy software.

The need for verification technology is most acute in systems that are required to be reliable, resilient,
and secure in an uncertain and hostile environment. Such systems include those from avionics, automotive
control, process control, power distribution, health care, and electronic voting. These systems exhibit
complex interaction between the software components and the physical world. The slightest flaw in the
software can expose security vulnerabilities or lead to catastrophic system failure.

Verification approaches the construction of software through the use of rigorous formal models.
These models have a mathematical meaning that is captured using formal logic. Such models can be
used to capture requirements, emulate the operating environment, formulate specifications, craft designs,
decompose system functionality into modules, interpret and annotate programs, generate test cases, and
verify component and system properties. The use of mathematical models also facilitates the use of highly
automated tools. These tools can be used to identify the presence of flaws through the systematic generation
of test cases, proof obligations, interface assumptions, and security vulnerabilities. They can also establish
the absence of certain kinds of errors through analysis, exploration, and proof. Finally, such tools can be
used as design aids to decompose problems, derive new solutions, and compose existing solutions.
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Verification technology has been improving
rapidly in both scaleand functionalityA range of
robust and mature techniques for static and dynamic
analysis statespaceexploration constrainisolving,
automatednd interactiveproof generatiorand test
case generation are n@wvailableand in useThese
techniques can be applied to models and programs.
Verification technologies need to be systematically
woven into the software developmeptocess.
The successful mainstreaming of verification
technology requires a seamless integration of the
individual techniques supported by an ambitious
agenda of experimentalork. Tool construction

FEATURE

repair system state through constraintsolving.
Seamlessintegration between different tools is
needed to generate run-time checks and monitors,
testcasescounterexamplegonjecturesscenarios,
abstractions,and proofs. A formal integrated
development environment for verified software

can be used to construct an assurance case for
certification through a systematic argument for the
safety and security of the system. Verification allows

the assurancegument to be decomposed along the
lines of components and service layers, each with its
own reusablessurancease.Softwareis expected

to operatan a safe,secureandpredictablemanner

and experimest must be supported by novein a world of physical uncertaintand virtual
vulnerability. Powerful verification technology
will be neededto economicallydevelop,validate,
and maintairsoftware that is not only reliablbut
manifestly trustworthy s

theoreticainsightsleadingto accurateandtractable
models as well as scalable and efficient algorithms.
Verification technology has a rapidly growing range
of applications. Techniques like model checking
and constraintsolving are being used tomodel
physical and biologicalsystems and to generatsd
plans, schedules, and optimizatiolfey are also
used to fingerprint security threats such as worms
and viruses and to chedilardwareand software
equivalence to guard against the insertion of
malicious code.

A comprehensive framework for verified
software developmentcan address a numbe
of challengesin software engineeringAt the
requirements level, it provides a convenient
modeling framework for describing discrete an
continuoushehavior time andresourceconstraints,
fault models, and securitpolicies. These formal
models can be analyzed for anomalies and putat
propertiesandalsoused for generatingestcases.
In the design phase, verification technology can
be usedto verify algorithms and architectures;
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decompose the system into modules; establish the

absence of unintended information flows between
software componentssupport semanticservice
discoveryand compositionand facilitateresilient
system operatiomn the face of device, platform,

or operator failure. During the implementation

phase,various integratedtools for synthesis and
analysis can be usedto generateand optimize
code; establish the absence of run-time errors,
race conditions, and information flows; identify
interface properties;compose software modules;
schedule tasks on multicoprocessors; and even

The Next Wave ® Vol 19 No 1 ¢ 2011 33



Software for Dependable Systems:
Sufficient Evidence?

34 Software for Dependable Systems: Sufficient Evidence?



FEATURE

Note: The following article is the irdduction to the Nationahcademy of Science (NA®port, Softwae for
Dependable Systems: Sufficient Evidence? Full copies of the report (free PDF download and book purchase)
are available through the National Academy Press at http: //'www.nap.edu/catalog.php?record _id=11923

ow can software and the systems that rely on it be made

dependable in a cost-effective manner, and how can one obtain

assurance that dependability has been achieved? Rather than
focusing narrowly on the question of software or system certification
per se, this report adopts a broader perspective.

A system is dependablehen it can assumed to be the resafterrors of usage; : Lq' ﬁ =
be depended on to produce the rather, the role of design flaws should be =0 et HE
consequences for which it was designedonsidereds well as the role of the human
and no adverse fefcts, in its intended operator As a consequencea systems
environment. This means, first and engineering approach—which  views
foremost,that the term dependabilityhas  the software as one engineeretifact
no usefulmearing for a given system ip 5 Jager systemof many components,
until theseconsequenceandthe intended someengineeredindsomegiven, andthe

enwronme_n_t ar_e made epr|C|t_ by a pursuitof dependabilityas a balancingof
clear prioritization of the requw'ements costs and benefits and a prioritization of
of the system and an artiation of risks—is vital.

environmentahssumptionsThe efects of
software are felt in the physicdiuman,
and organizationalenvironmentin which
it operates,so dependabilityshould be

Unfortunately, it is difficult to assess
the dependability of software. The field
of software engineering defs from

understood in thatontextand cannobe @ Pervasive ldc of evidenceabout the
reducedeasilyto local properties, such as incidenceand severity of software failures;

resilienceto crashing or conformande abouthe dependabilitgf existingsoftware
a protocol. Humans who intetawith the —systems; about the efficacy of existing and
softwareshouldbe viewednot as external Proposed developmentethodsaboutthe
and beyond the boundary of the softwarkenefits of certification schemes; and so on.
engineets concens but as an integral partTherearemanyanecdotateportswhich—
of the systemFailuresinvolving human although often useful for indicatingreas
operators should not autorwatly be of concern or highlightingpromising
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avenue®f research—ddttle to establish
a sound and completeasis for making
policy decisions regardindependability

Moreover there is sometimes an implicit,

assumption thatadhering to particular
process strictueguaranteesertainlevels
of dependability The committee[NAS
Committee on Certifiably Dependable
Software Systems] regards clainof
extraordinary dependability that are
sometimesnade on this basis for the mostiependabilitycas will influence many
critical of systems as unsubstantiatedgspects of the developmeintcluding the
and perhaps irresponsible. This difficulty
regarding the lack of evidender system
dependabilityleads to two conclusions
reflected in the committee’s findings and
recommendationdelow: (1) that better
evidenceis needed, so thapproaches . .
aimed at improving the dependability augmentedby analysis.The ability to

of softwarecan be objectivelyassessed, makelndepenqece agumgnts thaallow
and (2) that, for nowthe pursuit of global propertiesto be inferred from
dependabilityin software systems should@" analgis of a relativelysmall part of

focus on the constructionand evaluation the systemwill be essential.Rigorous
of evidence. processewill be neededto ensurethat

the chan of evidencefor dependability

software architeture, and simplicitywill

"be key For high levelof dependability
the evidence provided by tesgi alone
will rarely suffice and will have to be

The committeethus subscribes to
the view that software is “guilty until claims is preserved.
proven innocent,’and thatthe burden of The committee also recognized
proof fallson thedeveloperto convince the importanceof adoptingthe practices
the certifier or regulator that the software
is dependableThis approach is not novelpest developers; this summary gives
and is becomingstandardin the world sample of such practicés more detail
of systems safetyin which an explicit
safety case (and not meregdherence configuration management and automated

‘9 9°°d practie) is usually required. regression testing) are relativedasy to
Similarly, a software system should be .

o adopt; others (such as construgthrazard
regardedas dependablenly if it has a

that are alreadyknown and used by the

below Someof these(such as systematic

Assessment

Societyis increainglydependendn

choice of programming language and the,¢yare  Software failuresan cause or

contributeto serious accidenthat result
in death, injury, significant environmental
damage, or major financial loss. Such
accidents have alreadyoccurred, and,
without intervention, the increasingly
pervasiveuse of software—especialip
arenas such as transportatibaalth care,
andthebroadeinfrastructure—maynake
themmorefrequentand moreserious.In
thefuture, morepervasivedeploymenbf
software in thecivic infrastructire could
leadto more catastrophitailures unless
improvements are made.

Software, accordingto a popular
view, fails becase of bugs: errors in the
8odethat causea progranto fail to meeits
specification. In fact, only a tiny proportion
of failures can be attributdd bugsAs is
well known to software engineg by far
the largest class of problenmarises from
errors made in the elicitingiecording,
and analysis of requirementa. second

. . analyses and threat models, exploiting__. .
credible dependability case, the elements Y P thajor class of problems arises from poor

of which are described beloviMeeting formal notatiors when appropriateand

the burden of proof for dependability
will be challemying. The demand for

applying static analysis to code) will
require new traiimg for many developers.

human factors desigrifhe two classes
are related; bad user interfase usually
reflect an inadequate understanding of

credibleevidencewill, in practice, make However valuate, though, these practicesthe usets domain and the absence of a

it infeasible to develop highly dependabl@rein themselvs nosilverbullet, andnew
systems in a costfefctive way without techniquesand methodswill be required

coherentand well-articulatedconceptual
model. Security vulnerabiles are

some radical changes in priorities. Ifin order to build future software systemso some extentan exceptionto this

very high dependabilitis to be achieved to the level of dependabilitthat will be
at reasonablecost, the needs of the required.
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observationThe overwhelmingmajority
of security vulnerabilities reported in
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software products—and exploited to of particular development approaches, software system dependatyl and
attackthe users of such products—are d@bols, or techniques. Moreoyehe report that suggest a diérent approach to
theimplementatiorievel. The prevalence leaves to the developers and procurers gie developmentand assessment of
of code-relatedproblems, however is individual systems the question of whatiependablesoftware. Due to a lack of
a direct consequenceof higherlevel level of dependability is appropriate, andufficient data to support or contradict
decisions to use programmitanguages, whatcosts are worth incurring to achieve itany particular approach, a software
designmethods, andibraries that admit Nonetheless, the evidenagailable system may not be declarttependable”
these problems. to the committeedid support several based on the method by which it
In systems where software failurequalitativeconclusions. First, developingwas constructed Rathey it should be
could have significant human or financial ~software to meet even exXistingregarded as dependable— certifiably
costs, it is crucial that software be dependability criteria is difficult and dependable—only when  adequate
dependable—thatt can be depended costly Lamge software projects fail at agyidencehas beermarshaledn support
upon to functionas expecte@nd to not high rate, and the cost of projects that dgf an agumentfor dependabilitythatcan

cause or contrite to adverse events inSucceedn delivering highly dependable e jndependentl assessedThe goal of

the environmen in which it operates. software is often exorbitant. Secondcmiﬁably dependable software cannot

Improvementsin dependability would  the qualityof software produced by they,q otore e achieved by mandating

allow such systems to be used mor#dustry is extremelyariable,and there particular processes and approaches,

is inadequateoversight in some critical . . . .
q ) g i } regardless of their gfctiveness in certain
areas. Today’s certification regimes and

tandards havaixed q situations. Instead, software developers
software itselhas greapotentid to bring  CONSENSUS STANCATAS NAMIXEATSCOTT. = (4 2 shalevidence to justify an

i i i Some are laely inefective, and some - . ,

improvements in safety in many areas. Lely ne explicit dependabilityclaim that makes
are counterproductiveThey share a _ o
clear which properties in the real world

. heavyrelianceon testing, which cannot o i

software-related system failures or . . . ‘ the system is intendetd estatih. Such
provide sufficient evidence for the high i .

evidence forms a dependabilitycase,

the efficacy of particular software - . .
levels of dependabilityequired in many ) - ’

developmenapproaches are hard to come L. i applications and creatinga dependabilitycaseis the
by, making objective scientific evaluation . cornerstone of the committseapproach

. . A final observation is that the culture
difficult. Moreover, the lack of systematic
reporting of software-related system
failuresis a seriousproblemthat makes
it more difficult to evaluate the risks and
costs of such failuregnd to measure
the efectivenessof proposed policiesr
interventions.

widely and with greater confidence
for the benefit of society. Moreover,

Completeand reliabledata about

to developing certifiably dependable

of an organizationin which softwareis
software systems.

producedcan have a dramaticeffect on
its quality and dependabilitylt seems
likely that the excellentecord of avionics

softwareis duein large part to a safety The committees proposed approach
culture in that industry that encouragegan pe summarizeh “the three Es’—

meticulous attention to detail, high . ; ; .
This lack of evidence has two direct 9N explicit claims, evidence, and expertise:

aversion to risk, and realistassessment
consequencefor this report.First, it has of software, stdf and process. Indeed
informedthe key recommendationim this much of the benefit of standards such
report regarding the need for evidence tobe, 5 1788 Software Considerationsa" conditions. So to be useful, a claim
at the core of dependablesoftwaresystem of dependabilif must be explicit. It

_ in Airborne Systems and Equipment ] ) )
development; for data collection fats Certification, may be due to the safety must articulate precisely the properties

 Explicit claims. No system can be
dependable”in all respects and under

to be established; and for transparency,ire that their strictures induce. the system |s.expectedto exhibit and
and openness to be encouraged. Second, the assumptions about the system’
it has tempered the commitieetlesire Toward certifiably environment upon which the claim is
to provide prescriptive guidanceThe dependable software contingentTheclaimshould alsandicate

approach recommended is therefore  The focus of thisreportis asetof explicitly the level of dependability
largely free of endorsements or criticismgundamental principles that underlie claimed,preferablyin quantitativeterms.
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Different propertiesmay be assured todevelopment, in

different levels of dependability

consideration, and in

the domain under
the broader

Complementing‘the three Es” are

e Evidence. For a SyStem to be regarde&yStemS ContexmmonQOtherthings_is several Systems engineerin@eas that

as dependable concrete evidence
must be present thadubstantiateshe
dependabilityclaim. This evidencewill
take the form of a dependabilitypase
armguing that the required properties
follow from the combinationof the
propertiesof the system itselfthatis, the
implementation)and the environmental
assumptions. Because testing alone
is usually insufficient to establish
propertiesthecase willtypically combine

necessaryo achievedependablsystems.
Flexibility is an importantadvantageof
the proposed approach; in padiar the

developer is not required to follow any

provide an essentidoundation for the
building of dependable software systems:

* Systems thinking. Engineering fields

particular process or use any particulauwIth long experénce in building complex

method or technology. This flexibility
allows experts freedono employ new
techniquesand to tailor the approachto
the systens applicatiorand domain. But
the requiremento produce evidencés
highly demandingand likely to stretch

evidence from testing with evidence today’s best practice® theirlimit. It will
from analysis. In addition, the case willthereforebe essentiathatdevebpers are
inevitably involve appeals to the procesdamiliar with best practicesnd deviate
by which thesoftware was developed—from them only for good reason.

for exanple, to ague that the software
deployed in the field is the same software

These prescriptions shape any
particulardevelgpmentapproabt only in

that was subjected to analysis or testing.outline and give considerabléreedom
« Expertise. Expertise—in software {0 developers in their choice of methodsof software dependability

languages,tools, and processes.This

systems (for example, aerospace,
chemical, and nuclear engineering)
have developedapproaches based on
“systems thinking.” These approaches
focus on properties of the system as a
whole and on the interactiomsnong its
componentsespeciallythose interactions
(often neglected between a component
being constructednd the components of
its environmentAs software has come to
be deployed in—indeedhas enabled—
increasinglycomplex systems, the system
aspechas comeo dominatein questions

» Software as a system component.

approactis not, of course, a silver bullet. pependability is not an intrinsic

Therearenoeasysolutionsto theproblem
of devebping dependablsoftware, and
therewill always be systems thednnobe

property of softwareThe committee
strongly endorses the perspective of
systems engineering, which views the

built to the required level of dependabilitysoﬁware as one engineeredartifact in

even using the latest methods.But, the
approach reconmended is aimed at
producing certifiably dependable systems
today andthecommitteebelievest holds
promisefor developingthe systemsthat
will be needed in the future.

In the overaltontextof engineeing,

a lager system of many components,
some engineered and some given, and
views the pursuit of dependability as
a balancing of costs and benefits and
a prioritization of risks.A software
component that may be dependable in
the context of one system might not be

the basic tenets of the proposed approac

are not controversial, so it may be
surprise tosome that the approachis
not already commonplaceNor are the
elementof theapproacmovel;theyhave

ependable in the context of another

a

e Humans as components. People—
the operators and users (and even
the developers and maintaiep of a

been applied successfully for more thagystem—mayalso be viewed as system

a deca@. Nevertheless,this approach
would requireradical changesfor most
software  development organizations
and is likelyto demandexpertisethatis
currently in short supply
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components. If a system meets its
dependabilitycriteria only if people act

in certainways, therthosepeopleshould

be regarded as part of the system, and an
estimateof the probabilitythat they will



behaveasrequiredshouldbe part of the profound implcation. Any component
evidence for dependability for which compelling evidence of

« Real-world properties. The properties dependability has been amassed at
of interest to the user of a system arkeasonablecost will likely be small by
typically locatedin the physical world:
that a radiotherapymachine deliver a
certain dose, thata telephonetransmit
a sound wave faithfully that a printer
make appropride ink marks on paper
and so on.The software,on the other
hand, is typically specified in terms of
properties at its interfaceshich usually
involve phenomena thadre not of direct
interestto the user: that the radiotherapy As a result,one key to achieving
machine, telepltone, or printersend or dependability at reasonablecost is a
receive certain signals atcertain ports, serious and sustained commitmetut
with the inputs relatedo the outputs simplicity, including simplicityof critical
accordingto some rules. It is important, functions and simplicity in system
thereforeto distinguish the requirementsinteractions.This commitmentis often
of a software system, which represerthe mark of true expertisén awareness
these properties in the physical worldpf the need for simplicityisually comes
only with bitter experience and the

systems. Every critical specification
property therefore, will have to be
assured by one, or at most a fesmall
components. Sometimées will not be
possible to separatsoncernsso cleanly
and in that case,the dependabilitycase
may be less credibler more expensive

to produce.

from the specification of a software
system, which characterizes

the behavior of the software
system at its interfacewvith

the environmeh When the

software system is itselinly

one componentof a larger

system, theother components
in the system (including
perhaps, as explained above,

the peoplewho work with thesystem)
will beviewedaspartof theenvironment.

“Testing is indispensable,

humility gainedfrom years of practice.
There is no alternativeto simplicity.

FEATURE

individual components much smaller than
thesystemas awvhole,which canpreserve
these properties despite failarén the
rest of the system. Independencan be

the standards of most modern softwarestablishedn the overall designof the

system,with the support of architectural
mechanisms. Its &fct is to dramatically
reduce the cost of constructing a

dependabilitycase for a propertysince

only arelatively small part of the system

needs to be considered.

Appropriate simplicity  and
independencecannot be accomplished
without addressing the challengexf
“interactive complexity” and “tight
coupling.” Both interactivecomplexity
where componentsmay interact in
unanticipatedways, and tight coupling,
wherein a single fault cannot be isolated
but brings about other faults thedscade
through the system, are correlated
with the likelihood of system failure.

and no softwae system can begaided as dependable
if it has not been extensively tested...”

Software-intensivesystems tend to have
both attributes.Careful attentionshould

Advancesin technologyor development thereforebe paid to theisks of interactive
methods will not make simplicity complexity and tight coupling and the
redundant;on the contrary they will advantages of modularity isolation,
give it greaterleverage.To achievehigh and redundancy The interdependences
levelsof dependabilityin the foreseeable among componentsof critical software
future, striving for simplicityis likely to  systems should be analyzedensure that
be by far the most costfettive of all there is no fault propagation path from

Thedependabilig propertiesof a software
system, thereforeshould be expressed
as requirementsand the dependability
case should demonstrattow these
propertiesfollow from the combination
of the specification and the environmental

assumptions. . . L - .
interventions. Simplicityis not easy or less criticalcomponentgo more critical
cheap, but its rewards far outweigh its costsomponents,that modes of failureare

The need for evidence of The most important form well understood, and that failures are

dependability and the difficulty of of simplicity is that produced by localizedto the greatest extemiossible.
producing such evidence for complexndependence, in  which particular The reduction of interactiveomplexity
systems havea straightforward but system-leveproperties are guarantebg and tight coupling can contribute not
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only to the improvement of systemtested,evenif its correctnesshas been modules in aggregatehieveappropriate
dependabilityout also to the developmentproven mathemtically Testing may system-levekffects. These analyses will
of evidence and analysis in the service ofind flaws that elude analysis because sometimes involve informal gument
a dependability case. it exercises the system in its entiretythat is carefuly reviewed; sometimes
whereas analysis must typicallmake mechanicalinference (as performed, for
assumptions about the execution example, by “type checkers” that confirm
) . platform, the externalenvironment,and that menory is used in a consistentay
Generating a dependability case . .
fter the fact wh devel . “Operator responses, any of which magnd thatooundaries between modules are
Ia erl € acl, tW en 'aht eze opmen'bll%m out to be unwarrantedt the same respected)and,sometimesformal proof.
I m mi ible,, .. . . . .
.a gely co pge, g € poss. et|me,|t is importantto realizethattesting Indeed,the dependabilitycasefor even
in theory But in practice, at least with . . L . . .
i alone is rarely sufficient to establish high a relatively simple system will usually
todays technologythe costs of doing so . . . ; .
) NS . levels of dependability It is erroneous requireall of these kinds of analysis, and
would be high, and it will be practical to . . . .
to believe that a rigorous developmenthey will need to be fitted together into a

develop 'a depend.abll}ty case °”'Y i t_heprocess, iwhich testingandcodereview coherent whole.
system is built with its construction in

. Eachsipin devlopn s ") TSI (S e o s devetp
needs to preserve the chain of evidence envels of dependability. Some certification me- ° ?re y ?r:i .Umaﬂlgspef'lﬁlon.an
which will be based the gument that the schemesfor example, associatehigher ::eStlng or validation and verl C§t10H~
resulting system is dependable. ! ' ormal methods also use testing, but

At the start the domain and safety integrity levels Wit_h_ MOre  they employ notations and languages
, burdensome process presaops and that are amendb to rigorous analysis,

environmental assumptions and the; ;
P imply that following the processes gng they exploit mechanical tools

requiredpropertiesof the systemshould ocommendedfor the highest integrity for reasoning about theroperties of
be made explicjthey should be expresseqevels will ensure that the failunate is

unambiguously and in a form that permitginscule.in the absenceof a carefully
systematicanalysisto ensure thathere constructed dependability case, such
are no unresolvable conflicts between

the requiredproperties.Eachsubsequent
stage of devejpment should preserve
the evidencechain—thattheseproperties
havebeen carrid forward without being

requirements, specifications, designs, and
code. Practitioners have been skeptical
aboutthe practiality of formal methods.
confidence is misplaced. Increasingly howevey there is evidence
Because testing alone will not bethat formal mehods can yieldsystems
sufficient for the foreseeable future, of very high dependabilityin a cost-
the dependablity claim will also effective manne at least for small- to

corrupted—soeach form in which the 'cauire evidene producedpy a.naIyS|s. medium-sizectritical systemsAlthough
Moreover becaise analysis links the formal method are typically more

requirementsdesign, or implewntation oftware artifactglirectly to the claimed
. softw i i i i
is expressed should support analysis y expensiveio apply when only low levels

fo permit cheking that the required properties.Ihe analys_iscomponat of _the of dependabilityare requiredthe cost of
properties have been preservaffhat dependabilitycase will usually contr|'bute traditionalmethodsrises rapidlywith the
is sufficient will vary with the required conﬁdenc_e at a lower cost than teSt?r_‘g level of dependaility and often becomes
dependabilitybutpreservingheevidence for the hlghest IeveI; of dependabu!ly prohibitive. When a highly dependable
chain necessitateghat the checks are 9€Pendabilitycase will generallyequire  systemis required, therefore,a formal

carriedout in a disciplineavay, following oY forms of a.nalysis, inclucgr(l). the approach may be the most codeefive.

a documented procedure, and Ieavin\g/]a"datlonOf environmentahssumptions, - i

auditable records. Use models, and fault models; (2) th&ertification,

analysis of fault tolerance measures trransparency,

againstfault models; (3) schedulability and accountability

analysis for temporal behaviors; (4) A variety of certification regimes
Testing is indispensable, and nosecurity analyss againstattack models; existfor softwarein particularapplication

software system can be regarded 4g$) verification of code against module domains. For example, the Federal

dependabléf it has not been extensively specifications; and (6) checking that Aviation Authority (FAA) itself certifies
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new aircraft (and air-traffic management) When choosing suppliers andexplicitwho isaccountabldor anyfailure
systems that include software, and thiproducts, customers and users can make achieve it. Such accountabilitgn be
certification is then relied on by the informed judgmentsonly if the claims made explicit in the purchaseontract,
customersvho buy anduse theaircraft; arecredible.Such claimsareunlikely to  or as part of certification of the software,
the National Information Assurance be credible if the evidencenderlying or as part of a professional licensing
Partnership (NIAP) licenses third-party them is not transparent. Econisis have schemepr in otherways. Sinceno single
laboratoriesto assess security softwareestablishedthat if consumers cannotsolution will suit all the circumstances
products for conformance to the Commoneliably observe qualitypefore they buy in which certifiably dependable software
Criteria. Some lage oganizationshave sellers may get little economic benefit Systems are deployed, accountability
their own regimes for certifng that from providing higher quality thantheir regimesshould be tailored to particular
the software products they buy meet theompetitors, and overall quality can circumstancesAt present,it is common
organizations quality criteria, and many decline. Sellers are concerned abodobr software developersto disclaim,
software product manufactuse have future sales, and ‘“reputatioeffects” so far as possibleall liability for
their own critera that each version of compel them to strive to maintain a defects in their products, to a greater
their product must pass before release. minimum level of quality If consumers extent than customers and society
Few, if any, existing certification 'ely heavily on branding, though, itexpect from manufacturersin other
regimes encompass the combinatioRecomes more difficult for new firms to industries. Clearly, no softwareshould
of characteristic recommende in this €nterthe marketandquality innovations be consideredependabléf it is supplied
report—namely explicit dependability SPread more slowly with a disclainer that withholds the

claims, evidencefor those claims, and Those claiming dependability for ~Manufactures commitmento providea
a rigorous ayument thatdemonstrates their software should thereforemake Warrantyor otherremediesfor software
that the evidence is sufficient to available the details of their claims, thatfailsto meetits dependabilityclaims.
establishthe validity of the claims. To criteria, and evidence.To assess the Determining the appropriate scale of
establish that a system is dependabRsedibility of such detaileffectively, an remedieshoweverwas beyondhescope
will involve inspectionand analysisof ~evaluatorshouldbe ableto calibratenot  Of this studyandwould requirea careful
the dependabilityclaim andthe evidence only the techrgal claims and evidenceanalysis of benefits and costs, taking
offeredin its supportWherethecustomer but also the @anizationthat produced into account not only the legal issues but
for the system is not able to carry out thdhem, because the integrity of the also the state of software engineering,
work itself (for lack of time or lack of evidencechainis vital and cannoeasily the various submarkets for software,
expertise) it may need to involve a thirdoe assessed without supporting datas the economic impact, and thefesit on
party whose judgment it can rely on tosuggests thah some cases datfia more innovation.
be independenbf commercialpressures genergl nature ShOU.|d b? made aVa“ab'i‘(ev findings and
from the vendor. Certification can take including Fhe quah.ﬁcatlons of the recommendations
many forms, from self-certification by the ~ Personnel involved in the development;
supplier at one extreméo independent the tradk record of theorganizationin . i

i ) ) k .. ) findings and recommendations, each
third-party certification by a licensed Providing dependable software; and L . .

of which is discussed in more detdil

certification authority at the other. No the process by which the software was . .
. o R . . Chapter 4. (The full report is availatdée
single certification regime is suitable for developedThe willingness of a supplier .

. . . . Qttp.//www.nap.edu/catalog.php?record_
all circumstances, so a suitabsgheme to provide such data, and the clarity anc

’ ) . . . 1d=11923)

should be chosen for each cinestance. integrity of the datathat the supplier
Industry groups and professional societierovides, willbe a strong indicatioof its
should consider developingmodel attitude to dependability Improvements  in  softwar
certification schemes appropriate to their Where thereis a need to deploy development & needed to keep pace
domains, takingaccountof the detailed software that satisfies a particular with societal demands forsoftwae.
recommendations in this report. dependabilityclaim, it should always be Avoidablesoftware failures have already

Presented below are the committee’s
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been responsible for loss of litend for

major economic losses. The quality

of software produced by the industry

is extremely variable, and there is
inadequateoversight in several critical

areas. More pervasive deploymeat

software in the civic infrastructurmay

lead to catastrophic failures unless
improvementsare made.Software has
the potential to bring dramatic benefits

to society but it will not be possible to
realize these benefits—especially in

critical applications—unless software
becomes more dependable.

e Exploit simplicity. If dependability insufficient, the dependability claim will
is to be achieved at reasonable costequire,in addition, evidenceproduced
simplicity should become a key goal, andy other modes of analysis. Security
developerandcustomersnustbewilling  certification in particular should go
to accept the compromises it entails. ~ beyond functioal testing of the security
componentsof a system and assess the
effectiveness of measures the developer
took to prevent the introduction of
security vulnerabilities.

Make a dependabilitycase for a
given system and contextevidence,
explicitness,and expertiseA software
systemshouldberegardecasdependable
only if sufficient evidence of its explicitly Include security considerations
articulated properties is presented toin the dependability case. Security
substantiate the dependabilitglaim. vulnerabilities can undermine the case
This approactgivesconsiderabldeeway Made for dependability properties
to developers to use whatever practicddy Violating assumptions about how

More data is needed aboutre bestsuitedto the problemat hand. SOMPonents behave, —about  their
softwae failures and the efficacy of In practicethe challengesf developing Mteractions, or about the expected

development appaches.Assessment
of the stateof the softwareindustry the

risks posedby software,and progress
made is currenthhamperedoy the lack

of a coherent source of informatiabout

software failures.

dependable software are sufficiently great behavior of users. The dependability

that developers will need considerabltfgase must .tiere;orac.crc:unt explicitly
expertise, and they will have to justify or securityrisks thatmight compromise

o : its other aspects. It is also important to
any deviations from best practices. ] ] ) ]
ensure that security certifications give

Demand more  transparencyso meaningful assuranceof resistanceto
that customers and users can make moye . . . .
attack. New security certification regimes

informed judgments about dependabilityar

_ e needed that can provide confidence
Customers and users can mak®rmed

that most attacks against certified products

Make the most of effective judgments when choosing supplierg, ystems wilfail. Such regimes cabe
softwae development technologiesand products only if the claimsriteria, ¢ by applying the other findings and

and formal methods. A variety of
modern technolgies—in particlar, safe
programming languages, statamalysis
(analysis of software and source code
done without actually executing the
program), and formal methods— are
likely to reduce the cost and difficulty of
producing dependable software.

Follow proven principles for
softwae developmeniThecommittees

and evidence for dependabilitare (ecommendationsf this report, with an
transparent. emphasisntheroleof theenvironment—

Make use of but do not rely solelyin particulay the assumptionsnadeabout
on processind testingTesting will be an the potentialactions of a hostilattacker
essential component of a dependabilitynd the likelihod that new classes of
case, but will not in general suffice, vulnerabilities will be discovered and
because even the ¢mst test suites new attacks developed to exploit them.
typically used will not exercisenough Demand accountabilitgnd make it
pathgo provideevidencehatthesoftware explicit. Where there is a need to deploy
is correct nor will it have sufficient certifiably dependable software, it should

proposed approach also includestatistical significance for the levels of always be madexplicit who or what is

adherence to the following principles:

e Take a systems perspective. Here the
dependabilityof software is viewedot

confidence usually desired. Rigorous accountable professionallyand legally
processis essentialfor preservingthe for any failure to achieve the declared
chainof dependabilityevidencebutis not  dependability

in terms of intrinsic properties (such agPer se evidence of dependability

the incidenceof bugs in the code) but

Base certification on inspection

rather in terms of the system as a whol@nd analysis of the dependabilityaim

including interactions among people,
process, and technolagy

and the evidere ofered in its support. The committeavas not constituted
Becausetesting and process aloneare or chagedto recommendbudgetlevels
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or to assessrade-ofs between software Softwae Systemsconvened under the

dependability and other priorities.
However it believesthat the increasing

auspices of the NR€'Computer Science
and TelecommunicationsBoard. The

importanceof software to society and committeeconsistedof 13 expertsfrom

the extraordinary challenge currently

industry and academiapecializing in

facedin producingsoftware of adequate diverse aspects of systems dependability
dependabilityprovide a strong rationale including software engineeringpftware

for investment in educatioand research
initiatives.

Place  greater
dependability—and its
underpinnings—in
undegraduateandgraduateeducatiorof
software developerdMany practitioners
do not have an adequate appreciadfthe

emphasis  on
fundamental

the high school,accident theory

testing and evaluation, software
dependability = embedded systems,
human-computer interaction, systems
engineering, systems  architecture,
standards setting,
avionics, medicine,economics,security
and regulatorypolicy. Committeechair
Daniel Jackson, a professor of Computer

software dependabilityssues discussed Science at MIT; committee member

in this report, arenot aware of thenost

effective developmenpracticesavailable
today or are not capablef applyingthem

appropriately Wider implemetation of

the committees recommendedpproach,
which goes beyond today’ state of
the practicemplies a need for further
education and training activities.

Federal agencies that support
information technology research and
developmenshould give priorityto basic
research to further software-enabled
system dependability emphasizing a
systems perspectivand evidence.In
keepingwith this reports approachsuch
researchshould emphasizea systems
perspectiveand “thethree Es” (explicit
claims, evidence, and expertise) and
should be informed by a systemsview
that attachesmore importanceto those
advanceshatarelikely to havean impact

in a world of lage systems interacting

with other systems andoperators in
a complex physical environment and
organizational context

About the report

This report was authoredly the
National Reseah Councils (NRC)
Committee on Certifiably Dependable

Martyn Thomas visiting professor
of software engineering at Oxford
University; and Lynette Millett, senior
staff officer at the NRC, edited the report.

Discussions initiated by the
High Confidence Software and
Systems Coordinating Gup (HCSS
CG) of the National Science and
TechnologyCouncil's Networkingand
Information Technology Reseean and
Development (NITRD) Subcommittee
with the NRCS ComputerScienceand
Telecommunications Board resulted
in this study on thecurrent state of
certification in dependable systems.
Funding for the study was obtainfdm
HCSS CGmember agencies.
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itical Code:

Sgﬁzware Producibility for Defense

x A Short Summary

suggest that'in S and Europe 20 percent to 25 percent of overall economic gr'owl:h
and nearly 40 percent of the increase in overall economic productivity since 1995
are attributed to information and communications technology. It is also reflected in
individual systems. For example, in modern automobiles, the portion of system functions
performed in software is now 40 percent and approaching 50 percent. In the DoD, the
growth has been even more profound—in military aircraft, for example, the percentage
of system functions performed by software has risen to more than 80 percent.

This growth of software in role and significance is a natural outcome of its special
engineering characteristics: software is uniquely unbounded and flexible, having relative-
ly few intrinsic limits on the degree to which it can be scaled in complexity and capability.
This is because software is an abstract and purely synthetic medium that, for the most
part, lacks fundamental physical limits and natural constraints. For example, unlike
physical hardware, software can be delivered and upgraded electronically and remotely,
greatly facilitating rapid adaptation to changes in adversary threats, mission priorities,
technology, and other aspects of the operating environment. The principal constraint on
what can be accomplished is the human intellectual capacity to understand problems
and systems, to build tools to manage them, and to provide assurance—all at ever-
greater levels of scale and complexity.

The extent of the DoD code in service has been increasing by more than an order
of magnitude every decade, and a similar growth pattern has been exhibited within
individual, long-lived military systems. In addition to this growth in size, there is a cor-
responding growth in overall systems capability, complexity, interconnectedness, and
agility. This growth is enabled by the increasing power of software languages, tools,
and practices, as well as by a significant growth in the dependence of DoD systems on
increasingly complex, diverse, and geographically distributed supply chains. These supply
chains include not only custom components developed for specific mission purposes, but
also commercial and open-source ecosystems and components, such as the widely used
infrastructures for web services, mobile devices, and graphical user interaction.

Because of the rapid growth in significance of software capability to the DoD
overall, the Director of Defense Research and Engineering (now Assistant Secretary of
Defense for Research and Engineering) requested the National Research Council (NRC)
Committee for Advancing Software-Intensive Systems Producibility to undertake a study
to address the challenges of defense software producibility, identifying the principal
challenges and developing recommendations regarding both improvements to practice
and priorities for research. The NRC committee just released its final report, titled
Critical Code: Software Producibility for Defense. Full copies of the report (free PDF
download and book purchase), along with related prior reports, are available through
the National Academy Press at http://www.nap.edu/catalog.php?record_id=12979.
This article summarizes the principal findings and recommendations of that report.
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The necessity of sustaining
software innovation

An initial question is whether
software is indeeda strategicbuilding
material,worthy of specialattention.This

FEATURE

paper by John Backus describinthe document structure very explicitlinto
first Fortran compiler. The title included numbersand arrays.A person reading
the words “automaticprogramming.” program textwould see only numerical
The point of this phrase, with respecand array operationsbecausethat was
to Backuss great accomplishment,the limit of what could be explicitly

question has been addressed periodical'l?/ that there was a muchmore direct expressed in the notatiomhis meant

by the Defense Science Board (DSB)
since 1985—a 2007 DSB report, for

correspondencéetween his high-level that programmes neededo keeptrack,
programming  notation—the earliest in their heads or in documentatioof the

example, stated that “in the Departmenlfoman code—and pure mathematical natureof this representationaéncoding.

of Defense, the transformationaffects
of information technology (IT—defined

here broadly to include all forms ofconstrue that it was imagined that Fortran

computingand communicationy joined
with a culture of information sharing,
called Net-Centricity constitute a
powerful force multiplier The DoD
has becomencreasingly dependentfor
mission-criticaffunctionalityupon highly
interconnected,globally sourcedIT of
dramatically varying quality reliability,
and trustworthiness.”

thinking than had been the case witht also meanthattesters and evaluators
the early machine-levelcode. One can neededto assess programs through this
(hopefully) same layer of interpretation.
enabled mathenaticians to express As
their thoughts directly to computers, (including

seemingly without the intervention of versions), these additionabtructures
programmers. The early Fortran was can be much more directigxpressed—
indeed an extraordinaryand historical charactersand Strings, most obviou$|y
breakthrough. But we know that, in th%re intrinsic  in near|y all modern
end, those mathematiciarg 50 years |anguages. It is interestingpwever that
ago soon evolved into programmers—aghe claim of “automatic programming”
a direct consequenceof their growing continuesto reappearfrom time to time

languages have evolved
more modern  Fortran

Despite the strength of this statemen@Mmbitions for computing applications.
every few years speculation surfaces
that perhaps software and informatiompaper, Fortran was used to support list-
technologymay beapproaching a plateauprocessing applications, typesetting
of capability and performance and thaapplications, compilers for other
strategic attention to these technologies languages, and other applicatiombose
consequently not meritethe committee abstractionsrequired some considerable
emphasizes that this continues to be grogramming sophistication (and
false and dangerous speculation—theepresentationaferrymandering)to be
capability and the complexity of hardwareepresented effectively as early Fortran

Just a few years after the Backusbstractions, for

as major steps are made improved
example related to
data manipulatior(the so-called4GLS).
These developmentsove us forward,
but ironically they do not actally get
us closer to “eliminatingprogrammers”
or otherwise emeging at some plateau
of capabilty and neacommodity
status. Instead, new software-manifest
capabilities are constantly emging—

andsoftwaresystemsarebothrisingatan data structures—arrays and numerifor example, techniquesfor machine-

accelerating rate, with no end in sight.  values. Any program that manipulated

It is instructive in this regard, to textual data, for exampleneeded to
considerthe publicationin 1958—more encode the text characters, textsigings,
thana halfcenturyago—of thdandmark and any overarchingparagraph and

learning algorithmsand highly parallel
data-intensive analytics—that continue
to demandconsiderabléntellectualeffort
on the part of programmers.
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The profound factis thatsoftware on manstream commercial and open made within an engineeringprocess—

capability is bounded primarily by
our
capabilityboth to creatmew abstractions
appropriate for application domains
and to manifes those abstractions in
languagesmodels,tools, and practices.
As our understanding advance® can
our software capability advance with us.

As aconsequencef this seeming
unboundedness, the committee finds that
technologicalleadership in softwaris a
key driver of overall capabilitieadership
in systems-and that at the core of the
ability to achieventegratiorand maintain
missionagility is theability of the DoD
to produce and evolvesoftware. The
committeerecommends that, tavoid
loss of leadership, the Dofake active

“...to avoid loss of leadership,

source components, supply chairsd

specialneedsin its missionsystemsthat
aredrivenby thegrowingrole of software
in systems overall. The committee
recommends that the Dobegularly
undertake an identification of areas
of technologicalneed whez the DoD
has “leading demand” and wieer
accelerated jpgress is needed.

Three goals for software-
intensive development

The committee identified three areas
where improvements in practiogould
materially benefit the ability of the DoD
to devebp, sustain,and assuresoftware-
intensive systemsof all kinds. Each of
these areas is the subjedta chapter in

the risks are high when the outcomes of

intellectual abilities—our human software ecosystems, it nonetheless hammediateproject commitmentsre both

consequential and difficult to predict.
Engineering risks can relate to many
different kinds of engineerirdgcisions—
most significantly architecture, quality
attributes, functional characteits, and
infrastructure choices.

When well managed, increnmal
practices can enable innovative
engineeringo beaccomplisheavithouta
necessarily consequent increase of overall
programmaticrisk. (Programmatic risk
relates to the successful completion
of engineering projects with respect
to expectationsand prioritiesfor cost,
schedule,capability quality, and other
attributes.)This is becauséncremental

practiceenableengineering
risks to be identified early
and mitigated promptly.

the DoD [should] take active steps to becomeeaniolly engaged incremental practices are

in the innovative cessesalated to softwar producibility.”

steps to become nwrfully engaged

the Critical Code report.(These three

enabled through the use
of diverse techigues such
as modeling, simulation,

in the innovative mcesseselated to areas of practiceorrespond to Chaptersprf{tOty_ping,and other .meansfo!r early
softwae poducibility. In particular 2, 3, and 4. Chapter 1 of the report focuse&ilidation—coupled with extesions to
the extrardinary pace of innovation we innovation. Chapter 5 summarizethe 9ive credit for the accumulag body
are now witnessing, will not produce research agenda relatetb software Of evidence in support of feasibility

the committee finds that industry, despite

software innovationgn areas of defense
significance at a rate fast enough to
allow the DoD to fullymeetits software-
related requirements and remainead of
potential adversaries.

A loss of leadeship could threaten
the ability of the DoD to manifest
world-leading capability and also to
achieve adequée levels of assurance

producibility.) Thethreeareasof practice
are summarized below:

Advances relat to process and
measurementwould facilitate broader
and more déctive use of incremental
iterative development, particularly in
the arms-lengthcontracting situations

for the diversely sourced software itcommon in DoD.

intends to deplayThis is an important
part of the ratinale for the committee
recommendatiorthat the DoDreengage
directly in the innovation processes.

The committee also finds that

Incrementaldevelopmentpractices
enable continuous identification and
mitigation of engineeringrisks during
a systems development process.
Engineering risks pertain to the

although the DoD relies fundamentallyconsequences of particulahoices to be

46 Critical Code: Software Producibility for Defense

Incrementalapproachesnclude iterative
approachesstaged acquisitiorgvidence-
based systems engineering, and other
methods that explicitly acknowledge
engineering risk and its mitigation.

The committee finds that
incremental and iterative methods are
of fundamental significance to DoD
for innovative, software-intensive
engineeringin the DoD, and theycan
be managed more fettively through
improvementsn practices and supporting
tools. The committee ecommends a
diverse set of immvements elated
to advanced inemental development
practice,suppating tools, and earned-
value models.
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Practice improvement 2: quality attributs, architecturedecisions system characteristics.The weights
Architecture may dominate functional capability given the various attributes are typically
Advances relad to architecture choices in overall significance. The determined on the basis a@hodels of
practicewould facilitatethe early focus Committee also notes thatarchitecture hazards associated with the operational
on systems architectutbat is essential Practice in many areasof industry is context, including potentialthreats.The
particularly for systems with demandingsufficiently mature for DoD to adopt. ~process of achieving software assurance,
requirementselatedto quality attributes, The committeeecommends that DoD regardless of sectas generally recognized
interlinking, and planned flexibility. more aggessively assert ehitectural to account for approximately half the total
leadership, with an early focus orfevelopment cost for major projects.
architectue being essential faystems In addition to overallcost, DoD
with  innovative functionality or faces several particulachallenges for
Sc'iemanding qualityequirements. assurance. First, there is often an arms-
length relationshipbetweena contractor
development team and government
stakeholders, making it difficult to develop
Advancesrelatedto assuranc@nd  ang share thenformation necessaryto
securitywould facilitateachievemenbf making assurancgudgments. This can
mission assurance for systems at greatgy,q o approacheghat overly focus on
degreesof scale and complexity and post hoc acceptanceevaluation, rather
in the presence of rich supply chainghan on the emging practiceof “building
and architecturalecosystems that arejy evidence in support of an overall

_ . , increasingly commonplacein modermn  assyrancease.Second, modersystems
aiChlt,eCturE ﬂdelill?;t;on ‘ ﬁe@bodlez software engineering. draw on components from diverse
planning 1ot Hexibrity=—dening - anc Assuranceis a human judgment sources.This implies that supply-chain
encapsulatingareas where innovation . . . ) .
and change are anticipatetichitecture regarding not just functionality but and configuration-related attacks must

' also diverse quality attributes relatede contemplatedwith “attack surfaces”

d?ﬁmtlon als? most ,Strongly H%ﬂuences to reliability, security safety and other existing within an overallapplication,
diverse quality attributessanging from

availability and performanceto security
and isolation.Additionally, architecture
embodies plannig for the interlinkingof

systems and for produle development,
enabling encapsulation of individual

innovative elements of a system.

Software architecturemodels the
structuresof a system that comprises
software components, the externally
visible properties of those component
and the relationships among theoractice improvement 3:
components. Good architecturentails Assurance and security
a minimumof engineeringcommitment
thatyields a maximunvalue.In particular
architecture design is an engineering
activity that is separate, for example
from ecosystems certification and other
standards-related policy setting.

For complex innovative systems,

For many innovative systems,
therefore,it may be more effective to
considearchitectureand qualityattributes
before making specific commitments
to functionality Because architecture
includes the earliest and, often, the
most importantdesign decisions—those
engineering costs that are most difficult
to change later—early architectural
commitment (and validation) can
yield better project outcomeswith less
programmatic risk.

The committee finds that in highly
complex systems with emphasis on
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The committee notes that traditional
approachesasedpurely on testingand
inspection,no matterhow extesive, are
often insufficiently effective for modern
software systems. It emphasizekat
evaluationpracticesthat focus primarily
on post hocaccetanceevaluation arenot
only very costly but are often insufficient
to justify useful assurancejudgments.
That is, qualityand security must be
built in, and not “testedn”—with the
consequencéhat evidenceroductionin
support of assuranceust be integrated
into software development.

The committee finds that assurance
is facilitatedoy advances in diverse aspects
of software engineering practice and
technologyincluding modelinganalysis,
tools and environments,traceability
and configuration management,
and not just at its perimeteThis has The Defense SciendBoard found Programming languages, and process
the consequence that evaluatiand in 2007 that “itis an essential requirementupport. The committee also finds that,
preventive approaches ideallynust be that the United States maintaadvanced after many years of slow progress,
integratedthroughouta complexsupply  capability for ‘test and evaluation’of IT fecent advance have enabledmore
chain.A particulr challengeis managing products. Reputimn-based or trust-basedrapid improvementin assurance-related
opaqueor “black box,” components in a credentialingof software (‘provenance’) t€chniquesand tools. This is already
system—this issue is addressed in the fulleedgo be augmentedy direct, artifact- evidentin the most advancezbmmercial
report. Third, the growing role of DoD  ¢5cused means to support acceptan&evelopmentpractice. The committee
software in warfighting, in protection of o1 o600 »  This is a significant also finds that simultaneous creation of
national assets, and in the safeguardingha"em}e'due to the rapid advanoaf assurance-relategividencewith ongoing
of human lives creates a diminismngsoftwaretechndogy generally and also development has high potential to
tolerancefor faulty assurance judgments,the increasing pace by which potentiailmprovethe overallassurance of systems.
Indeed, the Defense Science Board adversarieareadvancingheir capability The committeeecommends enhancing
notes that there are profound risks This, coupled with the observationsincentives for preventive softwae
associated with the increasing re"ancgbm}eregarding software innovatiors assurance practicesd poduction of
on modern software-intensivesystems: animportantpart of the rationalefor the assuranceelatedevidencethroughout
“this growing dependencig a source of i i the softwae lifecycle and though
weakness exadeatedby the mounting commﬂteerecpmmendaﬂothatthe DoD the softwae supply chain. This
size, complexityand interconneedness act|vel)_/a_r_1dd|rectlyaddressts software includes both contractor and in-house
of its software programs.” Fourth, producibility needs. development dbrts.

losing the leadn the abilityto evaluate In the full report, thecommitee
software and to preveattackcanconfer addressed a broad range of issues relatéfe challenge of DoD

advantageto adversaries with respectiosoftwareassurancéncludingevidence- software expertise

to both offenseand defenselt canalso based approaches, evaluatipractices, The committee also took up
force us to overly “dumbown” systems, andsecurity-maivatedchallengsrelated the issue of software expertighat is
restrictingfunctionalityor performancéo  to configuration integrity (particularly in  specifically aligned with DoD interests.
a level such thaassurance judgments carthepresencef dynamism)yndseparation The committee found thatDoD has a
be more readily achieved. (including isolation and sandboxing). growing need for software expertise,
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but that it is not able to meet this need3) Component-based developmentand Development (NITRD) prografmhe
through intrinsic resources.This need including architectural designs for NITRD program provides aframework
is essential for the Dolo be a smart particular domains for diverse federahgenciego coordinate

software customeand program manager 2, validation, verification, and analysis
partiCUlarIy for |arger—SC8.|e innovative of design and codeGoals include:
software-intensiveprojects. In particular (1) Effectiveevaluatiorfor critical quality
access to DoD-aligned expertises attributes; (2) Components in lge

R&D in areasrelatedto networking and
information technology The framework
includes two areas that primarilglateto

software producibilitywhich are Software

importantfor the DoD to be ableto take heterogeneoussystems; (3) Preventive Design and Productivity (SDP) and
effective action in the three areas ofmethodsto achieveassuranceincluding High Confidence Software and Systems
practice that are identified above. Access  process  improvement, architectural (HCSS).Thereis alsoathird area,Cyber
to DoD-aligned expertisehas beenan  puilding blocks, programminganguages, Security and Information Assurance
areaof ongoing challengéo the DoD,  coding practice, etc. (CSIA) thatencompassesomeactivities
with recommendationgadeby various 3 process support and economic related to software producibility

panels and committees since the 19805'models for assuranceGoals include: The commitiee undertook a

(1) Enhancegprocesssupportfor assured |ongitudinal study of sponsored R&D
software development,(2) Models for pydgets as identified in NITRD reports,
evidenceproductionin softwaresupply ith specific focus on SDP and HCSS.
chains, (3) Application of economic |t found thatwhile NITRD overall has
principles to process decision-making grown over the past decadiere has
practiceas outlinedibove, the committee 4~ R€guiements.  Goals include: been a significant reduction in both
identified seven areas of supporting (1) EXPressive models, supporting toolgveralland DoD-sponsored R&D in SDP
researchfor considerationby science [0 functional and quality attributes; and HCSSThe committeeecommends
and technology program managers (2) Improvedsupport for traceabilitand  that DoD take immediatection to
(managing6.1, 6.2, and 6.3a funds andfary validation reinvigorateits investment in softwar
5. Language,modeling, coding, and producibility reseach, with focus in
tools. Goals include: (1) Expressive the seven identified areas. @
programming languagesfor emeging

challenges, (2) Exploit modern

concurrencyshared-memorgnd scalable

distributed, (3) Developer productivity

for new development and evolution

The need to reinvigorate
DoD software engineering
research

In addition to recommending
improvements to the three areas of

equivalent). These areas are identified on
the basis of four criteria{l) Advances
would yield significant potential value for
DoD software producibility (2) A well-
managedesearchprogramwould result
in feasibleprogress. (3Yhegoals arenot
addressed sufficiently by other federal

agencies.(4) The pace of development6. Cybefphysical systems. Goals
in industry or research labs would benclude: (1) New conventional
otherwise insufficient. architectures for control systems,

In each of the seven areas, th&) Improvedarchitecturesor embedded
committee identified specific goals for —applications
research and technologgevelopment 7. Human-system interactionGoals
that,in its judgmentcould feasibly meet include: (1) Engineering practices for
the four criteriaThe areas and, for eachsystems inwhich humansplay critical

the identified goals are summarized
below (Details are in the full report.)

1. Architectue modeling and
architectural analysis. Goals include:
(1) Early validation for architecture
decisions(2) Architecture-awarsystems
management, including: Rich supply
chains, ecosystems, andnfrastructure;

roles. [This aea is elaboratedin a
separate NRCaport)

Under the auspices of the Office of
Scienceand TechnologyPolicy (OSTP)
and the NationabcienceandTechnology
Council (NSTC), thereis a National
Coordination Office for the Networking
and Information Technology Research
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Cyber-Physical
Systems (C

DS]

ver its brief history, most of the computer science and engineering field has focused on systems

(e.g., the Internet and Web) that enable humans through information, communication,

and knowledge. Just as the first wave of desktop and high-performance computing technology

revolutionized the way people interact with information and with each other, the second wave will
revolutionize the way humans interact with their physical environment.

Our vision is one of fundamentally
that  exhibit
integrated computational and

cyber-physical  systems
deeply

physical capability, interacting with
humans through many new modalities. In
this future, the ability to interact with, and
expand capabilities of, the physical world
through computational means will be the
key technological multiplier. Individual
precursors are seen in the control of
inherently unstable systems such as flying
wings and other extreme-performance
aircraft, automobiles with hybrid gas-
electric or hydrogen-electric car engines
and enhanced vehicle stability systems,
fully autonomous urban driving, medical
devices for deep brain stimulation, and
prostheses that allow brain activity to
control physical objects. A rich field of
innovative research is envisioned that
can advance human progress through
the tensor product of cyber (computing,
communication, and control) technology
and the and

dynamics of natural

50 Cyber-Physical Systems (CPS]

engineered physical systems—as well as
their interactions with human participants.

What will such future systems
be like? Every system action will be
engineered to exploit both cyber and
physical capability, deeply integrated
throughout the system. Systems will
interact with humans in entirely new
ways, sharing authority. They may be
highly tailored to the requirements and
needs of individual users and uses, hence
highly heterogeneous. These systems
will be extensively, even ubiquitously,
networked. The majority of the systems
will be configured from cooperating
components that interoperate through
a complex mechanical, electrical,
biological, and/or chemical system,
coupled with a physical environment such
as a human. Many (perhaps most) systems
will be safety-, life-, or mission-critical
and must be highly dependable, available,
and secure. They will exhibit complex

dynamics at many spatial and temporal

scales. They will need to be predictive,
reactive to conditions and external events
with predictable and accurate timing, and
receptive to coordination and (private)
negotiation. Control loops may need to
be closed at various levels and scales.
Topologies may adapt and reconfigure.
Cyber-physical systems (CPS) will have
to be fault tolerant and recoverable,
satisfying  potentially high
availability and timeliness requirements.

very

CPS is a vision then for developing
a scientific and engineering foundation
for routinely building cyber-enabled
engineered systems in which cyber
capability is deeply embedded at all
scales, yet which remain safe, secure,
and dependable—*“systems you can bet
your life on.” The CPS challenge spans
essentially every engineering domain. It
will require the integration of knowledge
and engineering principles across
many computational and engineering
research

disciplines (computing,
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networking, control, human interaction,evolvability. Yet, wide design mgmns modifications on the status quo will not
learning theory as well as electrical, both limit performance and mawnish in  work!” Don Winter, Vice President for
mechanical, chemical, biomedical, nanothe face of changing usage patterfibis Engineeringand InformatiorTechnology
bioengineering, and other engineeringack of design discipline inducesteeme
disciplines) to deelop a “nev CPS risk in technology-impeerished sectors
sciencé. such as the electric mer industry

Boeing Phantom Works, in a hearing
before the House Science Committee,
called for ‘a national stategy in whih
(Ijong-term CPS tdmology needs &
addressed by combined wygrnment and
corporate investment.

The objectie of an initiatve would
be to establish unified foundations an
technologies, andxemplars for rigorous
joint engineering of theyber, physical,
future CPS.The eisting science and 5nq hyman aspects of systenhis A focused initiative in CPS is
engineering base does not support the,iectieincludesscienceandtechnology needed that wuld seek to maximize

routine, - efficient, and rculst. design for the engineering ofyber and pisical humancapabilityandwell-beingthrough
and deelopment of these 'nherentlycomponents that must be igtated to

complex systemsSuchcomplex systems constitute such  systemsAdditionally,
must possesstrustworthy qualities that g objectve includes the yber

are lacking in much of todays cyber physical characterization of comple : s
infrastructures.Today we can produce enjironments and human action, within /€ €nd-to-end science and engineering

(at great cost and feft) exceptionally \yhich such systems must operate and finciples. The etent to which such
complicated system&Ve lack, havever, \yhich the/ contritute. In contrast with adwances are achieved will determine
the scientific and engineering foundation%days artisanal approach, our objeeti (and can transform) the course of US
to securely safely and systematically js to hiild foundations, tools, and highlyinnovation; adancement of consumer
understand, ild, manage, and adapt CP&apable infrastructure for rigorous desigmealth, safety and security; andyov-

that remain reliable as tj?ldﬂteract acCross and engineering of 21st Century Systen'@rnment ager}cmission efiectiveness @
internal subsystems, with each otheith  that are trulycyberphysical

human users, and with highly comyle
and uncertain pfsical ewironments.

Impact/need for the CPS
initiative
A new foundation is required for

computationally enabled engineered and
physical systemsThe goal would be to
usher in a ne era of CPSfor which we

Today CPS grand challenges are
being articulated in man sectors (for

The design complety of x-by- example, net-zero engy huildings, a
wire for complex systems already is smart grid, engyy management systems
outstripping safe engineering design anfbr petroleum-freeeneny, zero-atality
implementation.Also, the opportunities and zero-crash highay and ‘ehicle
for mischief in this generationof systems, zero-prototype maaafuring,
technology will mak todays Internet and the wireless and highly automated
securityproblems pale by comparisdihe  opemting room of the futg). These
consequence is inefficient, unsound, andeasily computation-, control-, and
potentially dangerous design outcomes, abmmunication-centric systems call for
well astedious, costlyandfailure-prone a nav, unified systems science andane
design gcles. Certification is estimatedengineering technologies imagined by
to consume50 percentof the resources the CPS initiatie. In a keynote address
required to deelop nev, safety-critical on the challenges of design automation
systemsin the aviation industry Similar for emeging \ehicle technologies,
estimatesare predictedfor the medical Scott Stalg, Chief EngineerHybrid &
and automotie domains. Oer-design Fuel Cell Technology Deelopment for
currently is the only path to safety andord Motor Compay amgued the need
successful system certification, leading tto abandon ad hocxperimental design
a mindset of optimizing for a namotask approachesand find more rigorous
instead of encouraging adaptability andnethods, saying, “...incremental

The Next Wave = Vol 19 No 1 = 2011 51



You already know that intelligence is vital to
national security. But here’s something you
may not know.

The National Security Agency is the only
Intelligence Community agency that generates
intelligence from foreign signals and protects
U.S. systems from prying eyes.

If you have the professional skills or technical
expertise to support this important mission,
then explore NSA. At NSA you can experience

a variety of opportunities throughout your
career as you work on real-world challenges
with the latest technology. You'll also be able
to maintain a good balance between work and
family life, as well as enjoy a collaborative
work environment with flexible hours.

You won't find this kind of experience
anywhere else.

KNOWINGMATTERS

WY, r'i '5‘}'5'. EUIHIJ'. I.: 3 -n:'-E e '.II-I
APPLY TODAY

WATCH THE VviDEO "3

U.S. citizenship is required. NSA is an Equal Opportunity Employer. All applicants for employment are considered without regard to race, color, religion, sex, national origin, age, marital status, disability, sexual orientation, or status as a parent.
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CAREERS AT THE NATIONAL SECURITY AGENCY

Excellent Career Opportunities in the Following Fields:

Computer/Electrical Engineering
Computer Science

Information Assurance
Mathematics

Foreign Language

Intelligence Analysis

Find us on

Facebook

Search: NSACareers

Cryptanalysis

Signals Analysis
Business Management
Finance & Accounting

Paid Internships,
Scholarships, and Co-op

>> Plus other opportunities

Get the free App for your
camera phone at gettag.mobi
and then launch the App and
aim it at this tag.




